
pyPRISM Documentation
Release v1.0.4

Tyler B. Martin

Jul 01, 2020

Code Manual

1 Citations 2

2 pyPRISM Example 3

3 External Resources 4

4 Table of Contents 5

Python Module Index 139

Index 140

i

pyPRISM Documentation, Release v1.0.4

pyPRISM is a Python-based, open-source framework for conducting Polymer Reference Interaction Site Model
(PRISM) theory calculations. This framework aims to simplify PRISM-based studies by providing a user-friendly
scripting interface for setting up and numerically solving the PRISM equations.

PRISM theory describes the equilibrium spatial-correlations of liquid-like polymer systems including melts, blends,
solutions, block copolymers, ionomers, liquid crystal forming polymers and nanocomposites. Using PRISM theory,
one can calculate thermodynamic (e.g., second virial coefficients, Flory-Huggins 𝜒 interaction parameters, potentials
of mean force) and structural (e.g., pair correlation functions, structure factors) information for these macromolecular
materials. See the Frequently Asked Questions section for examples of systems and calculations that are available to
PRISM theory.

pyPRISM provides data structures, functions, and classes that streamline PRISM calculations, allowing pyPRISM to
be extended for use in other tasks such as the coarse-graining of atomistic simulation force-fields or the modeling of
experimental scattering data. The goal of this framework is to reduce the barrier to correctly and appropriately using
PRISM theory and to provide a platform for rapid calculations of the structure and thermodynamics of polymeric
fluids and nanocomposites.

Code Manual 1

CHAPTER 1

Citations

If you use pyPRISM in your work, we ask that you please cite both of the following articles

1. Martin, T.B.; Gartner, T.E. III; Jones, R.L.; Snyder, C.R.; Jayaraman, A.; pyPRISM: A Computational Tool
for Liquid State Theory Calculations of Macromolecular Materials, Macromolecules, 2018, 51 (8), p2906-2922
[link]

2. Schweizer, K.S.; Curro, J.G.; Integral Equation Theory of the Structure of Polymer Melts, Physical Review
Letters, 1987, 58 (3), p246-249 doi:10.1103/PhysRevLett.58.246 [link]

2

https://dx.doi.org/10.1021/acs.macromol.8b00011
https://doi.org/10.1103/PhysRevLett.58.246

CHAPTER 2

pyPRISM Example

Below is an example python script where we use pyPRISM to calculate the pair correlation functions for a nanocom-
posite (polymer + particle) system with attractive polymer-particle interactions. Below the script is a plot of the pair
correlation functions from this calculation. See Quickstart Guide for a more detailed discussion of this example.

import pyPRISM

sys = pyPRISM.System(['particle','polymer'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.01,length=4096)

sys.density['polymer'] = 0.75
sys.density['particle'] = 6e-6

sys.diameter['polymer'] = 1.0
sys.diameter['particle'] = 5.0

sys.omega['polymer','polymer'] = pyPRISM.omega.FreelyJointedChain(length=100,l=4.0/
→˓3.0)
sys.omega['polymer','particle'] = pyPRISM.omega.InterMolecular()
sys.omega['particle','particle'] = pyPRISM.omega.SingleSite()

sys.potential['polymer','polymer'] = pyPRISM.potential.HardSphere()
sys.potential['polymer','particle'] = pyPRISM.potential.Exponential(alpha=0.5,
→˓epsilon=1.0)
sys.potential['particle','particle'] = pyPRISM.potential.HardSphere()

sys.closure['polymer','polymer'] = pyPRISM.closure.PercusYevick()
sys.closure['polymer','particle'] = pyPRISM.closure.PercusYevick()
sys.closure['particle','particle'] = pyPRISM.closure.HyperNettedChain()

PRISM = sys.solve()

pcf = pyPRISM.calculate.prism.pair_correlation(PRISM)

3

CHAPTER 3

External Resources

Source Code Repository
Question/Issue Tracker
Interactive Binder Tutorial
Anaconda Cloud
Python Package Index

4

https://github.com/usnistgov/pyprism
https://github.com/usnistgov/pyprism/issues
https://mybinder.org/v2/gh/usnistgov/pyprism/master?filepath=tutorial
https://anaconda.org/conda-forge/pyprism
https://pypi.org/project/pyPRISM/

CHAPTER 4

Table of Contents

4.1 API

The fundamental PRISM equation is written in Fourier space as

�̂�(𝑘) = Ω̂(𝑘)𝐶(𝑘)
[︁
Ω̂(𝑘) + �̂�(𝑘)

]︁
where �̂�(𝑘) is the total correlation function, Ω̂(𝑘) is the intra-molecular correlation function, and 𝐶(𝑘) is the direct
correlation function. At each wavenumber 𝑘, each of these variables is an 𝑛 × 𝑛 matrix of values, where 𝑛 is the
number of components or site types in the system. The goal of any PRISM calculation is to obtain the full set of
partial correlation functions. Using these correlation functions, a number of structural and thermodynamic properties
can be calculated.

The pyPRISM.core module holds the fundamental data structures that carry out the PRISM calculation.

The pyPRISM.calculate module provides a number of functions which use solved pyPRISM.core.PRISM
objects to calculate structural and thermodynamic parameters.

The pyPRISM.closure module provides closure objects which are necessary for solving the PRISM equations.

The pyPRISM.omega module provides analytical intra-molecular correlation (�̂�(𝑘)) functions along with methods
for loading them from memory or files.

The pyPRISM.potential module provides pair potentials for describing the inter-molecular interactions in a
system. Pairwise interactions are also how the chemistry of the system is described.

The pyPRISM.trajectory module contains classes for working with molecular simulation trajectories.

The pyPRISM.util module provides various global helper functions which do not fall under the above categories.

See the Tutorial for more information on the details of using pyPRISM and the PRISM theory formalism.

pyPRISM.test()
Run all tests using pytest.

5

pyPRISM Documentation, Release v1.0.4

4.1.1 pyPRISM.core package

This module provides the base machinery and data structures for carrying out PRISM calculations.

pyPRISM.core.Density module

class pyPRISM.core.Density.Density(types)
Bases: object

Container for pair and site densities

Mathematical Definition

𝜌𝑝𝑎𝑖𝑟𝛼,𝛽 = 𝜌𝛼𝜌𝛽

𝜌𝑠𝑖𝑡𝑒𝛼,𝛽 =

{︃
𝜌𝛼 if 𝑖 = 𝑗

𝜌𝛼 + 𝜌𝛽 if 𝑖 ̸= 𝑗

𝜌𝑡𝑜𝑡𝑎𝑙 =
∑︁
𝛼

𝜌𝑠𝑖𝑡𝑒𝛼,𝛼

Variable Definitions

𝜌𝛼 Number density of site 𝛼

𝜌𝑝𝑎𝑖𝑟𝛼,𝛽 Pair number density of pair 𝛼, 𝛽

𝜌𝑠𝑖𝑡𝑒𝛼,𝛽 Site number density of pair 𝛼, 𝛽

𝜌𝑡𝑜𝑡𝑎𝑙 Total site number density

Description

This class describes the makeup of the system in terms of both total site and pair densities. The
container provides a simple interface for getting and setting (via square brackets []) site densities
and also takes care of calculating the total site and total pair number densities. The total site and pair
number densities can be accessed as MatrixArrays (pyPRISM.core.MatrixArray) attributes.

Example

import pyPRISM

rho = pyPRISM.Density(['A','B','C'])

rho['A'] = 0.25
rho['B'] = 0.35
rho['C'] = 0.15

rho.pair['A','B'] #pair density rho_AB = 0.25 * 0.35
rho.site['A','B'] #site density rho_AB = 0.25 + 0.35
rho.site['B','B'] #site density rho_BB = 0.35
rho.total #total density rho = 0.25 + 0.35 + 0.15

__init__(types)
Constructor

Parameters types (list) – List of types of sites

6 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

density
Table of site number density values

Type pyPRISM.core.ValueTable

total
Total number density

Type float

site
Site density for each pair.

Type pyPRISM.core.MatrixArray

pair
Pair site density for each pair.

Type pyPRISM.core.MatrixArray

check()
Are all densities set?

Raises *ValueError* if densities are not all set.

pyPRISM.core.Domain module

class pyPRISM.core.Domain.Domain(length, dr=None, dk=None)
Bases: object

Define domain and transform between Real and Fourier space

Mathematical Definition

The continuous, 1-D, radially symmetric Fourier transform is written as follows:

𝑘 𝑓(𝑘) = 4𝜋

∫︁
𝑟 𝑓(𝑟) sin(𝑘 𝑟)𝑑𝑟

We define the following discretizations

𝑟 = (𝑖 + 1)∆𝑟

𝑘 = (𝑗 + 1)∆𝑘

∆𝑘 =
𝜋

∆𝑟(𝑁 + 1)

to yield

𝐹𝑗 = 4𝜋∆𝑟

𝑁−1∑︁
𝑖=0

𝐹𝑖 sin

(︂
𝜋

𝑁 + 1
(𝑖 + 1)(𝑗 + 1)

)︂
with the following definitions:

𝐹𝑗 = (𝑗 + 1) ∆𝑘 𝑓((𝑗 + 1)∆𝑘) = 𝑘𝑓(𝑘)

𝐹𝑖 = (𝑖 + 1)∆𝑟 𝑓((𝑖 + 1)∆𝑟) = 𝑟𝑓(𝑟)

The above equations describe a Real to Real, type-I discrete sine transform (DST). To tranform to and
from Fourier space we will use the type-II and type-III DST’s respectively. With Scipy’s interface to
fftpack, the following functional coeffcients are

𝐶𝐷𝑆𝑇𝐼𝐼 = 2𝜋𝑟∆𝑟

𝐶𝐷𝑆𝑇𝐼𝐼𝐼 =
𝑘∆𝑘

4𝜋2

4.1. API 7

pyPRISM Documentation, Release v1.0.4

Description

Domain describes the discretization of Real and Fourier space and also sets up the functions and
coefficients for transforming data between them.

MatrixArray_to_fourier(marray)
Transform all pair-functions of a MatrixArray to Fourier space in-place

Parameters marray (pyPRISM.core.MatrixArray.MatrixArray) – MatrixArray to
be transformed

Raises *ValueError*: – If the supplied MatrixArray is already in Real-space

MatrixArray_to_real(marray)
Transform all pair-functions of a MatrixArray to Real space in-place

Parameters marray (pyPRISM.core.MatrixArray.MatrixArray) – MatrixArray to
be transformed

Raises ValueError: – If the supplied MatrixArray is already in Real-space

__init__(length, dr=None, dk=None)
Constructor

Parameters

• length (int) – Number of gridpoints in Real and Fourier space grid

• dr,dk (float) – Grid spacing in Real space or Fourier space. Only one can be specified
as it fixes the other.

build_grid()
Construct the Real and Fourier Space grids and transform coefficients

dk
Fourier grid spacing

dr
Real grid spacing

length
Number of points in grid

to_fourier(array)
Discrete Sine Transform of a numpy array

Parameters array (float ndarray) – Real-space data to be transformed

Returns array – data transformed to fourier space

Return type float ndarray

Peforms a Real-to-Real Discrete Sine Transform of type II on a numpy array of non-complex values. For
radial data that is symmetric in 𝜑 and :math‘theta‘, this is a correct transform to go from Real-space to
Fourier-space.

to_real(array)
Discrete Sine Transform of a numpy array

Parameters array (float ndarray) – Fourier-space data to be transformed

Returns

• array (float ndarray) – data transformed to Real space

• Peforms a Real-to-Real Discrete Sine Transform of type III

8 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

• on a numpy array of non-complex values. For radial data that is

• symmetric in :math:‘phi‘ and (math‘ heta‘, this is a correct transform)

• to go from Real-space to Fourier-space.

pyPRISM.core.IdentityMatrixArray module

class pyPRISM.core.IdentityMatrixArray.IdentityMatrixArray(length, rank,
data=None,
space=None,
types=None)

Bases: pyPRISM.core.MatrixArray.MatrixArray

Specialization of MatrixArray which is initialized with Identity matrices

See pyPRISM.core.MatrixArray for details

pyPRISM.core.MatrixArray module

class pyPRISM.core.MatrixArray.MatrixArray(length, rank, data=None, space=<Space.Real:
1>, types=None)

Bases: object

A container for creating and interacting with arrays of matrices

Description

The primary data structure of MatrixArray is simply a 3D Numpy array with the first dimension
accessing each individual matrix in the array and the last two dimenions corresponding to the vertical
and horizontal index of each matrix element.

The terminology pair-function is used to refer to the set of values from all matrices in the array at a
given matrix index pair. In Numpy slicing parlance:

pair_11 = numpy_array[:,1,1]
pair_12 = numpy_array[:,1,2]

Access to the MatrixArray is either by supplied types or numerical indices. If types are not supplied,
captial letters starting from ‘A’ are used.

See the example below and the pyPRISM Internals section of the Tutorial for more information.

Example

mArray = MatrixArray(length=1024,rank=2,types=['polymer','solvent'])

mArray['polymer','solvent'] == mArray['solvent','polymer'] == mArray.get(0,1)

SpaceError = 'Attempting MatrixArray math in non-matching spaces'

__getitem__(key)
pair-function getter

Parameters

• key (tuple of types) – Type pair used to identify pair

• val (np.ndarray) – Values of pair-function

4.1. API 9

pyPRISM Documentation, Release v1.0.4

__imul__(other)
Scalar or elementwise multiplication

__init__(length, rank, data=None, space=<Space.Real: 1>, types=None)
Constructor

Parameters

• length (int) – Number of matrices in array. For PRISM theory, this corresponds to the
number of grid points in real- and Fourier-space i.e. Domain.size.

• rank (int) – Number of rows/cols of each (square) matrix. For PRISM theory, this also
equal to the number of site types.

• data (np.ndarray, size (length,rank,rank)) – Interface for specifying
the MatrixArray data directly. If not given, all values in all matrices will be set to zero.

• space (pyPRISM.core.Space.Space) – Enumerated value tracking whether the
array represents real or Fourier spaced data. As we will be transferring arrays to and from
these spaces, it’s important for safety that we track this.

• types (list, optional) – List of semantic types that are be used to reference data. These
types will be output by the iterpair method as well. If not supplied, uppercase letters will
be used.

__itruediv__(other)
Scalar or elementwise division

__mul__(other)
Scalar or elementwise multiplication

__setitem__(key, val)
pair-function setter

Parameters

• key (tuple of types) – Type pair used to identify pair

• val (np.ndarray) – Values of pair-function

Assumes all matrices are symmetric and enforces symmetry by setting the off-diagonal elements to be
equal.

__truediv__(other)
Scalar or elementwise division

dot(other, inplace=False)
Matrix multiplication for each matrix in two MatrixArrays

Parameters

• other (object, MatrixArray) – Must be an object of MatrixArray type of the
same length and dimension

• inplace (bool) – If False, a new MatrixArray is returned, otherwise just update the
internal data.

get(index1, index2)
pair-function getter via indices

This method should be slightly more efficient than the standard __getitem__.

getMatrix(matrix_index)
Matrix getter via indices

10 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

get_copy()
Return an independent copy of this MatrixArray

invert(inplace=False)
Perform matrix inversion on all matrices in the MatrixArray

Parameters inplace (bool) – If False, a new MatrixArray is returned, otherwise just update
the internal data.

itercurve()

iterpairs()
Iterate over the pair-function in this MatrixArray

Yields

• (i,j) (2-tuple of integers) – numerical index to the underlying data numpy array

• (t1,t2) (2-tuple of string types) – string index to the underlying data numpy array

• pair-function (np.ndarray, size (self.length)) – 1-D array representing a pair-function
within the MatrixArray

setMatrix(matrix_index, value)
Matrix setter via indices

pyPRISM.core.PRISM module

class pyPRISM.core.PRISM.PRISM(sys)
Bases: object

Primary container for a storing a PRISM calculation

Each pyPRISM.PRISM object serves as an encapsulation of a fully specified PRISM problem including all
inputs needed for the calculation and the function to be numerically minimized.

domain
The Domain object fully specifies the Real- and Fourier- space solution grids.

Type pyPRISM.Domain

directCorr
The direct correlation function for all pairs of site types

Type pyPRISM.MatrixArray

omega
The intra-molecular correlation function for all pairs of site types

Type pyPRISM.MatrixArray

closure
Table of closure objects used to generate the direct correlation functions (directCorr)

Type pyPRISM.core.PairTable of pyPRISM.closure.Closure

pairCorr
The inter-molecular pair correlation functions for all pairs of site types. Also commonly refered to as the
radial distribution functions.

Type pyPRISM.MatrixArray

4.1. API 11

pyPRISM Documentation, Release v1.0.4

totalCorr
The inter-molecular total correlation function is simply the pair correlation function y-shifted by 1.0 i.e.
totalCorr = pairCorr - 1.0

Type pyPRISM.MatrixArray

potential
Interaction potentials for all pairs of sites

Type pyPRISM.MatrixArray

GammaIn,GammaOut
Primary inputs and outputs of the PRISM cost function. Gamma is defined as “totalCorr - directCorr” (in
Fourier space) and results from a change of variables used to remove divergences in the closure relations.

Type pyPRISM.MatrixArray

OC,IOC,I,etc
Various MatrixArrays used as intermediates in the PRISM functional. These arrays are pre-allocated and
stored for efficiency.

Type pyPRISM.MatrixArray

x,y
Current inputs and outputs of the cost function

Type float np.ndarray

pairDensityMatrix
Rank by rank array of pair densities between sites. See pyPRISM.core.Density

Type float np.ndarray

siteDensityMatrix
Rank by rank array of site densities. See pyPRISM.core.Density

Type float np.ndarray

cost:
Primary cost function used to define the criteria of a “converged” PRISM solution. The numerical solver
will be given this function and will attempt to find the inputs (self.x) that make the outputs (self.y) as close
to zero as possible.

cost(x)
Cost function

There are likely several cost functions that could be imagined using the PRISM equations. In this case we
formulate a self-consistent formulation where we expect the input of the PRISM equations to be identical
to the output.

The goal of the solve method is to numerically optimize the input (𝑟𝛾𝑖𝑛) so that the output (𝑟(𝛾𝑖𝑛 − 𝛾𝑜𝑢𝑡))
is minimized to zero.

solve(guess=None, method=’krylov’, options=None)
Attempt to numerically solve the PRISM equations

Using the supplied inputs (in the constructor), we attempt to numerically solve the PRISM equations using
the scheme laid out in cost(). If the numerical solution process is successful, the attributes of this class
will contain the solved values for a given input i.e. self.totalCorr will contain the numerically optimized
(solved) total correlation functions.

12 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

This function also does basic checks to ensure that the results are physical. At this point, this consists of
checking to make sure that the pair correlation functions are not negative. If this isn’t true a warning is
issued to the user.

Parameters

• guess (np.ndarray, size (rank*rank*length)) – The initial guess of 𝛾 to
the numerical solution process. The numpy array should be of size rank x rank x length
corresponding to the a full flattened MatrixArray. If not specified, an initial guess of all
zeros is used.

• method (string) – Set the type of optimization scheme to use. The scipy documenta-
tion for scipy.optimize.root details the possible values for this parameter.

options: dict Dictionary of options specific to the chosen solver method. The scipy documentation for
scipy.optimize.root details the possible values for this parameter.

pyPRISM.core.PairTable module

class pyPRISM.core.PairTable.PairTable(types, name, symmetric=True)
Bases: pyPRISM.core.Table.Table

Container for data that is keyed by pairs of types

Description

Since PRISM is a theory based in pair-correlation functions, it follows that many of the necessary
parameters of the theory are specified between the pairs of types. This goal of this container is to
make setting, getting, and checking these data easy.

Setter/getter methods have been set up to set groups of types simultaneously. This allows for the rapid
construction of datasets where many of the parameters are repeated. This class also automatically
assumes pair-reversibility and handles the setting of unlike pairs automatically i.e. A-B and B-A are
set at the same time.

Note that, unlike the pyPRISM.core.MatrixArray , this container is not meant to be used for
mathematics. The benefit of this is that, for each type, it can contain any arbitrary number, string, or
Python object.

See the example below and the pyPRISM Internals section of the Tutorial for more information.

Example

import pyPRISM

PT = pyPRISM.PairTable(['A','B','C'],name='potential')

Set the 'A-A' pair
PT['A','A'] = 'Lennard-Jones'

Set the 'B-A', 'A-B', 'B-B', 'B-C', and 'C-B' pairs
PT['B',['A','B','C']] = 'Weeks-Chandler-Andersen'

Set the 'C-A', 'A-C', 'C-C' pairs
PT['C',['A','C']] = 'Exponential'

for i,t,v in PT.iterpairs():

(continues on next page)

4.1. API 13

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

print('{}) {} for pair {}-{} is {}'.format(i,VT.name,t[0],t[1],v))

The above loop prints the following:
(0, 0)) potential for pair A-A is Lennard-Jones
(0, 1)) potential for pair A-B is Weeks-Chandler-Andersen
(0, 2)) potential for pair A-C is Exponential
(1, 1)) potential for pair B-B is Weeks-Chandler-Andersen
(1, 2)) potential for pair B-C is Weeks-Chandler-Andersen
(2, 2)) potential for pair C-C is Exponential

for i,t,v in PT.iterpairs(full=True):
print('{}) {} for pair {}-{} is {}'.format(i,VT.name,t[0],t[1],v))

The above loop prints the following:
(0, 0)) potential for pair A-A is Lennard-Jones
(0, 1)) potential for pair A-B is Weeks-Chandler-Andersen
(0, 2)) potential for pair A-C is Exponential
(1, 0)) potential for pair B-A is Weeks-Chandler-Andersen
(1, 1)) potential for pair B-B is Weeks-Chandler-Andersen
(1, 2)) potential for pair B-C is Weeks-Chandler-Andersen
(2, 0)) potential for pair C-A is Exponential
(2, 1)) potential for pair C-B is Weeks-Chandler-Andersen
(2, 2)) potential for pair C-C is Exponential

__init__(types, name, symmetric=True)
Constructor

Parameters

• types (list) – Lists of the types that will be used to key the PairTable. The length of
this list should be equal to the rank of the PRISM problem to be solved, i.e. len(types) ==
number of sites in system

• name (string) – The name of the PairTable. This is simply used as a convencience for
identifying the table internally.

• symmetric (bool) – If True, the table will automatically set both off-diagonal values
during assignment e.g. PT[‘A’,’B’] = 5 will set ‘A-B’ and ‘B-A’

apply(func, inplace=True)
Apply a function to all elements in the table in place

Parameters

• func (any object with __call__ method) – function to be called on all table
elements

• inplace (bool) – If True, apply modifications to self. Otherwise, create a new
PairTable.

check()
Is everything in the table set?

Raises ValueError if all values are not set

exportToMatrixArray(space=<Space.Real: 1>)
Convenience function for converting a table of arrays to a MatrixArray

14 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

Warning: This only works if the PairTable contains numerical data that is all of the same shape that
can be cast into a np.ndarray like object.

iterpairs(full=False, diagonal=True)
Convenience function for looping over table pairs.

Parameters

• full (bool) – If True, all i,j pairs (upper and lower diagonal) will be looped over

• diagonal (bool) – If True, only the i==j (on-diagonal) pairs will be considered when
looping

setUnset(value)
Set all values that have not been specified to a value

Parameters value – Any valid python object (number, list, array, etc) can be passed in as a
value for all unset fields.

pyPRISM.core.Space module

class pyPRISM.core.Space.Space
Bases: enum.Enum

An enumeration to track which space an object is in

Description MatrixArrays can represent data in Real- or Fourier- space and they can be transformed in-place
between these spaces. This class is meant to help track this state by creating a standard numerical reference
for each state that can be checked. This allows classes like pyPRISM.core.MatrixArray to do error
checking when doing math between arrays. This enumeration also defines a ‘wildcard’ state so that we
can still do math with non-spatial data.

Example

import pyPRISM

A = pyPRISM.MatrixArray(length=1000,rank=3,space=pyPRISM.Space.Real)
B = pyPRISM.MatrixArray(length=1000,rank=3,space=pyPRISM.Space.Real)
C = pyPRISM.MatrixArray(length=1000,rank=3,space=pyPRISM.Space.Fourier)

A.space == B.Space # returns True
A.space == C.Space # returns False

A.dot(C) #raises exception

Note: The enumerated states of the Space Enum are listed below. The actual values of these states are not-
important beyond being unique from one another.

Fourier = 2

NonSpatial = 3

Real = 1

4.1. API 15

pyPRISM Documentation, Release v1.0.4

pyPRISM.core.System module

class pyPRISM.core.System.System(types, kT=1.0)
Bases: object

Primary class used to spawn PRISM calculations

Description

The system object contains tables that fully describe a system to be simulated. This includes the
domain definition, all site densities, site diameters, interaction potentials, intra-molecular correla-
tion functions (�̂�(𝑘)), and closures. This class also contains a convenience function for spawning a
PRISM object.

Example

import pyPRISM

sys = pyPRISM.System(['A','B'])

sys.domain = pyPRISM.Domain(dr=0.1,length=1024)

sys.density['A'] = 0.1
sys.density['B'] = 0.75

sys.diameter[sys.types] = 1.0

sys.closure[sys.types,sys.types] = pyPRISM.closure.PercusYevick()

sys.potential[sys.types,sys.types] = pyPRISM.potential.HardSphere()

sys.omega['A','A'] = pyPRISM.omega.SingleSite()
sys.omega['A','B'] = pyPRISM.omega.InterMolecular()
sys.omega['B','B'] = pyPRISM.omega.Gaussian(sigma=1.0,length=10000)

PRISM = sys.createPRISM()

PRISM.solve()

__init__(types, kT=1.0)

Parameters

• types (list) – Lists of the site types that define the system

• kT (float) – Thermal temperature where 𝑘 is the Boltzmann constant and 𝑇 temperature.
This is typicaly specified in reduced units where 𝑘𝐵 = 1.0.

types
List of site types

Type list

rank
Number of site types

Type int

density
Container for all density values

Type pyPRISM.core.Density

16 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

potential
Table of pair potentials between all site pairs in real space

Type pyPRISM.core.PairTable

closure
Table of closures between all site pairs

Type pyPRISM.core.PairTable

omega
Table of omega correlation functions in Fourier-space

Type pyPRISM.core.PairTable

domain
Domain object which specifies the Real and Fourier space solution grid.

Type pyPRISM.core.Domain

kT
Value of the thermal energy level. Used to vary temperature and scale the potential energy functions.

Type float

diameter
Site diameters.

Warning: These diameters are currently only passed to the closures. They are not passed to
potentials and it is up to the user to set sane sigma values that match these diameters.

Type pyPRISM.core.ValueTable

check()
Is everything in the system specified?

Raises ValueError if all values are not set

createPRISM()
Construct a PRISM object

Note: This method calls check() before creating the PRISM object.

Returns PRISM – Fully specified PRISM object

Return type pyPRISM.core.PRISM

iterpairs(full=False, diagonal=True)
Convenience function for looping over type pairs.

Parameters

• full (bool) – If True, all i,j pairs (upper and lower diagonal) will be looped over

• diagonal (bool) – If True, only the i==j (on-diagonal) pairs will be considered when
looping

solve(*args, **kwargs)
Construct a PRISM object and attempt a numerical solution

Note: See solve() for arguments to this function

4.1. API 17

pyPRISM Documentation, Release v1.0.4

Note: This method calls check() before creating the PRISM object.

Returns PRISM – Solved PRISM object

Return type pyPRISM.core.PRISM

pyPRISM.core.Table module

class pyPRISM.core.Table.Table
Bases: object

Baseclass used to define tables of parameters

Note: This class should not be used/instatiated directly. It is only intended to be inherited.

listify(values)
Helper fuction that converts any input into a list of inputs.

The purpose of this function is to help with iterating over types, and to handle the case of a single str
type being passed.

pyPRISM.core.ValueTable module

class pyPRISM.core.ValueTable.ValueTable(types, name)
Bases: pyPRISM.core.Table.Table

Container for data that is keyed by types

Description

The goal of this class is to provide a simple inteface for setting and storing parameters that are
accessed and identified by types. This is typically site properties, e.g. density, site diameter. By
default the value for all types is set to None and therefore can be checked to see if the table has been
fully specified.

Setter/getter methods have been create to set groups of types simultaneously. This allows for the
rapid construction of datasets where many of the parameters are repeTated.

Note that, unlike the pyPRISM.core.MatrixArray , this container is not meant to be used for
mathematics. The benefit of this is that, for each type, it can contain any arbitrary number, string, or
Python object.

See the example below and the pyPRISM Internals section of the Tutorial for more information.

Example

import pyPRISM

VT = pyPRISM.ValueTable(['A','B','C','D','E'],name='density')

set the value for type A to be 0.25
VT['A'] = 0.25

(continues on next page)

18 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

set the value for types B & C to be 0.35
VT[['B','C']] = 0.35

set all other values to be 0.1
VT.setUnset(0.1)

for i,t,v in VT:
print('{}) {} for type {} is {}'.format(i,VT.name,t,v))

The above loop prints the following:
0) density for type A is 0.25
1) density for type B is 0.35
2) density for type C is 0.35
3) density for type D is 0.1
4) density for type E is 0.1

__init__(types, name)
Constructor

Parameters

• types (list) – Lists of the types that will be used to key the ValueTable. The length of
this list should be equal to the rank of the PRISM problem to be solved i.e. len(types) ==
number of sites in system.

• name (string) – The name of the ValueTable. Currently, this is simply used as a con-
vencience for identifying the table internally.

__iter__()
Data iterator

This magic-method allows for ValueTables to be iterated over via for x in y constructs like

for index,type,value in ValueTable:
print(index,type,value)

Yields

• index (int) – index of value

• type – type of value

• value – stored value at this type

check()
Is everything in the table set?

Raises *ValueError* if all values are not set

setUnset(value)
Set all values that have not been specified to a value

Parameters value – Any valid python object (number, list, array, etc) can be passed in as a
value for all unset fields.

4.1. API 19

pyPRISM Documentation, Release v1.0.4

4.1.2 pyPRISM.calculate package

Once the PRISM equation is solved, �̂�(𝑘), Ω̂(𝑘), and 𝐶(𝑘) are used to calculate various structural and thermodynamic
properties. As listed below, pyPRISM provides functions that calculate these properties from solved pyPRISM.
core.PRISM objects.

If a desired calculation is not listed, please consider filing an Issue on GitHub, implementing the calculation, and
sharing with the community. See Contributing for more details.

pyPRISM.calculate.chi module

pyPRISM.calculate.chi.chi(PRISM, extrapolate=True)
Calculate the effective interaction parameter, 𝜒

Parameters

• PRISM (pyPRISM.core.PRISM) – A solved PRISM object.

• extrapolate (bool, optional) – If True, only return the chi value extrapolated to 𝑘 = 0
rather than returning 𝜒(𝑘)

Returns chi – PairTable of all 𝜒(𝑘) or 𝜒(𝑘 = 0) values

Return type pyPRISM.core.PairTable

Mathematical Definition

�̂�𝛼,𝛽(𝑘) =
0.5𝜌

𝑅+0.5𝜑𝛼 + 𝑅−0.5𝜑𝛽
(𝑅−1𝐶𝛼,𝛼(𝑘) + 𝑅𝐶𝛽,𝛽(𝑘) − 2𝐶𝛼,𝛽(𝑘))

𝑅 = 𝑣𝛼/𝑣𝛽

Variable Definitions

• �̂�𝛼,𝛽(𝑘) Wavenumber dependent effective interaction parameter between site types 𝛼 and 𝛽

• 𝜌 Total system density from the pyPRISM.core.Density instance stored in the system object (which
is stored in the PRISM object)

• 𝜑𝛼, 𝜑𝛽 Volume fraction of site types 𝛼 and 𝛽.

𝜑𝛼 =
𝜌𝛼

𝜌𝛼 + 𝜌𝛽

• 𝑣𝛼, 𝑣𝛽 Volume of site type 𝛼 and 𝛽

Description

�̂�𝛼,𝛽(𝑘) describes the overall effective interactions between site types 𝛼 and 𝛽 as a single number.
While there are many different definitions of 𝜒, this is an effective version that takes into account
both entropic and enthalpic interactions. In this way, this 𝜒 is similar to a second virial coefficient.
In terms of value, 𝜒 < 0 indicates effective attraction and 𝜒 > 0 effective repulsion.

As most theories do not take into account the (potentially contentious [2,3]) wavenumber dependence
of 𝜒, the zero-wavenumber extrapolation is often used when reporting PRISM-based 𝜒 values. For
convenience, the full wavenumber dependent curve can be requested, but only the 𝑘 = 0 values are
returned by default.

20 Chapter 4. Table of Contents

https://github.com/usnistgov/pyPRISM/issues

pyPRISM Documentation, Release v1.0.4

Warning: Using standard atomic closures (e.g, PY, HNC, MSA), PRISM theory may not predict the
correct scaling of spinodal temperatures for phase separating systems. While this issue is mitigated by using
molecular closures,[3] these closures are not currently implemented in pyPRISM. For more information, this
issue is referenced in the pyPRISM paper.[5]. We urge users to do their due diligence in understanding how
well these closures and PRISM theory perform for their systems of interest.

Warning: The 𝜒 calculation is only valid for multicomponent systems i.e. systems with more than one
defined type. This method will throw an exception if passed a 1-component PRISM object.

Warning: This calculation is only rigorously defined in the two-component case. With that said, pyPRISM
allows this method to be called for multicomponent systems in order to calculate pairwise 𝜒 values. We
urge caution when using this method for multicomponent systems as it is not clear if this approach is fully
rigorous.

Warning: Passing an unsolved PRISM object to this function will still produce output based on the default
values of the attributes of the PRISM object.

References

1. Schweizer, Curro, Thermodynamics of Polymer Blends, J. Chem. Phys., 1989 91 (8) 5059, DOI:
10.1063/1.457598 [link]

2. Zirkel, A., et al., Small-angle neutron scattering investigation of the Q-dependence of the Flory-Huggins
interaction parameter in a binary polymer blend. Macromolecules, 2002. 35(19): p. 7375-7386. [link]

3. Cabral, Higgins, Small Angle Neutron Scattering from the Highly Interacting Polymer Mixture
TMPC/PSd: No Evidence of Spatially Dependent chi Parameter. Macromolecules, 2009. 42(24): p.
9528-9536. [link]

4. Schweizer, K.S. and A. Yethiraj, POLYMER REFERENCE INTERACTION SITE MODEL-THEORY
- NEW MOLECULAR CLOSURES FOR PHASE-SEPARATING FLUIDS AND ALLOYS. Journal of
Chemical Physics, 1993. 98(11): p. 9053-9079. [link]

5. Martin, T.B.; Gartner, T.E. III; Jones, R.L.; Snyder, C.R.; Jayaraman, A.; pyPRISM: A Computational
Tool for Liquid State Theory Calculations of Macromolecular Materials, Macromolecules, 2018, 51 (8),
p2906-2922 [link]

Example

import pyPRISM

sys = pyPRISM.System(['A','B'])

** populate system variables **

PRISM = sys.createPRISM()

(continues on next page)

4.1. API 21

http://dx.doi.org/10.1063/1.457598
http://dx.doi.org/10.1021/ma010576o
http://dx.doi.org/10.1021/ma901516v
http://dx.doi.org/10.1063/1.464465
https://dx.doi.org/10.1021/acs.macromol.8b00011

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

PRISM.solve()

chi = pyPRISM.calculate.chi(PRISM)

chi_AB = chi['A','B']
chi_AA = chi['A','A'] #returns None because self-chi values are not defined

pyPRISM.calculate.pair_correlation module

pyPRISM.calculate.pair_correlation.pair_correlation(PRISM)
Calculate the Real-space inter-molecular pair correlation function

Parameters PRISM (pyPRISM.core.PRISM) – A solved PRISM object.

Returns pairCorr – The full MatrixArray of pair correlation functions.

Return type pyPRISM.core.MatrixArray

Mathematical Definition

𝑔𝛼,𝛽(𝑟) = ℎ𝛼,𝛽(𝑟) + 1.0

Variable Definitions

• 𝑔𝛼,𝛽(𝑟) Pair correlation function between site types 𝛼 and 𝛽 at a distance 𝑟

• ℎ𝛼,𝛽(𝑟) Total correlation function between site types 𝛼 and 𝛽 at a distance 𝑟

Description

The pair correlation function describes the spatial correlations between pairs of sites in Real-space.
Also known as the radial distribution function (rdf), the 𝑔(𝑟) function is related to the underlying
spatial probability distributions of a given system. In a PRISM calculation, 𝑔(𝑟) is strictly an inter-
molecular quantity.

After convergence of a PRISM object, the stored total correlation attribute function can simply be
shifted to obtain the 𝑔(𝑟)

Warning: Passing an unsolved PRISM object to this function will still produce output based on the default
values of the attributes of the PRISM object.

Example

import pyPRISM

sys = pyPRISM.System(['A','B'])

** populate system variables **

PRISM = sys.createPRISM()

PRISM.solve()

rdf = pyPRISM.calculate.pair_correlation(PRISM)

(continues on next page)

22 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

rdf_AA = rdf['A','A']
rdf_AB = rdf['A','B']
rdf_BB = rdf['B','B']

pyPRISM.calculate.pmf module

pyPRISM.calculate.pmf.pmf(PRISM)
Calculate the potentials of mean force

Parameters PRISM (pyPRISM.core.PRISM) – A solved PRISM object.

Returns pmf – The full MatrixArray of potentials of mean force

Return type pyPRISM.core.MatrixArray

Mathematical Definition

𝑤𝛼,𝛽(𝑟) = −𝑘𝐵𝑇 ln(ℎ𝛼,𝛽(𝑟) + 1.0)

Variable Definitions

• 𝑤𝛼,𝛽(𝑟) Potential of mean force between site types 𝛼 and 𝛽 at a distance 𝑟

• 𝑔𝛼,𝛽(𝑟) Pair correlation function between site types 𝛼 and 𝛽 at a distance 𝑟

• ℎ𝛼,𝛽(𝑟) Total correlation function between site types 𝛼 and 𝛽 at a distance 𝑟

Description

A potential of mean force (PMF) between site types 𝛼 and 𝛽, 𝑤𝛼,𝛽 represents the the ensemble
averaged free energy change needed to bring these two sites from infinite separation to a distance 𝑟.
It can also be thought of as a potential that would be needed to reproduce the underlying 𝑔𝛼,𝛽(𝑟).

Warning: Passing an unsolved PRISM object to this function will still produce output based on the default
values of the attributes of the PRISM object.

Example

import pyPRISM

sys = pyPRISM.System(['A','B'])

** populate system variables **

PRISM = sys.createPRISM()

PRISM.solve()

pmf = pyPRISM.calculate.pmf(PRISM)

pmf_BB = pmf['B','B']

4.1. API 23

pyPRISM Documentation, Release v1.0.4

pyPRISM.calculate.second_virial module

pyPRISM.calculate.second_virial.second_virial(PRISM, extrapolate=True)
Calculate the second virial coefficient

Parameters

• PRISM (pyPRISM.core.PRISM) – A solved PRISM object.

• extrapolate (bool, optional) – If True, extrapolate ℎ𝛼,𝛽 to 𝑘 = 0 rather than reporting
the value at the lowest-k. Defaults to True.

Returns B2 – Pairtable of B2 values

Return type pyPRISM.core.PairTable

Mathematical Definition

𝐵𝛼,𝛽
2 = −0.5ℎ̂𝛼,𝛽(𝑘 = 0)

Variable Definitions

• 𝐵𝛼,𝛽
2 Second virial coefficient between site types 𝛼 and 𝛽

• ℎ̂𝛼,𝛽(𝑘) Fourier-space total correlation function between site types 𝛼 and 𝛽 at wavevector 𝑘

Description

The second virial coefficient (𝐵𝛼,𝛽
2) is a thermodynamic descriptor related to the pairwise interactions

between components in a system. In general, 𝐵𝛼,𝛽
2 > 0 signifies repulsive interactions between site

types 𝛼 and 𝛽, and 𝐵𝛼,𝛽
2 < 0 signifies attractive interactions. For example, in a polymer-solvent

system, one definition of the theta condition is when 𝐵𝛼,𝛽
2 = 0.

Warning: Passing an unsolved PRISM object to this function will still produce output based on the default
values of the attributes of the PRISM object.

Example

import pyPRISM

sys = pyPRISM.System(['A','B'])

** populate system variables **

PRISM = sys.createPRISM()

PRISM.solve()

B2 = pyPRISM.calculate.second_virial(PRISM)

B2_BB = B2['B','B']

pyPRISM.calculate.solvation_potential module

pyPRISM.calculate.solvation_potential.solvation_potential(PRISM, clo-
sure=’HNC’)

Calculate the pairwise decomposed medium-induced solvation potential

24 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

Parameters

• PRISM (pyPRISM.core.PRISM) – A solved PRISM object.

• closure (str ('PY' or 'HNC')) – closure used to derive the potential

Returns psi – MatrixArray of the Real-space solvation potentials

Return type pyPRISM.core.MatrixArray

Mathematical Definition

PY: ∆Ψ̂𝑃𝑌 (𝑘) = −𝑘𝐵𝑇 ln(1 + 𝐶(𝑘)𝑆(𝑘)𝐶(𝑘))

HNC: ∆Ψ̂𝐻𝑁𝐶(𝑘) = −𝑘𝐵𝑇𝐶(𝑘)𝑆(𝑘)𝐶(𝑘)

Variable Definitions

• ∆Ψ̂𝑃𝑌 , ∆Ψ̂𝐻𝑁𝐶 Percus-Yevick and Hypernetted Chain derived pairwise decomposed solvation poten-
tials, each described as a MatrixArray . This implies that the multiplication in the above equation
is actually matrix multiplication and the individual solvation potentials are extracted as pair-functions
of the MatrixArrays. Note that the solvation potential MatrixArrays are inverted back to Real-space
for use.

• 𝐶(𝑘) Direct correlation function MatrixArray at a wavenumber 𝑘

• 𝑆(𝑘) Structure factor MatrixArray at a wavenumber 𝑘

• 𝑘𝐵𝑇 Thermal temperature written as the product of the Boltzmann constant and temperature.

Description

The solvation potential (∆Ψ̂) mathematically describes how a given surrounding medium perturbs
the site-site pairwise interactions of a molecule.

This calculation is the foundation of the Self-Consistent PRISM formalism. See Self-Consistent
PRISM Method for more information.

Warning: Passing an unsolved PRISM object to this function will still produce output based on the default
values of the attributes of the PRISM object.

References

1. Grayce, Schweizer, Solvation potentials for macromolecules, J. Chem. Phys., 1994 100 (9) 6846 [link]

2. Schweizer, Honnell, Curro, Reference interaction site model theory of polymeric liquids: Self-consistent
formulation and nonideality effects in dense solutions and melts, J. Chem. Phys., 1992 96 (4) 3211 [link]

Example

import pyPRISM

sys = pyPRISM.System(['A','B'])

** populate system variables **

PRISM = sys.createPRISM()

(continues on next page)

4.1. API 25

https://doi.org/10.1063/1.467044
https://doi.org/10.1063/1.461965

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

PRISM.solve()

psi = pyPRISM.calculate.solvation_potential(PRISM)

psi_BB = psi['B','B']

pyPRISM.calculate.spinodal_condition module

pyPRISM.calculate.spinodal_condition.spinodal_condition(PRISM, extrapo-
late=True)

Calculate the spinodal condition between pairs of components

Parameters

• PRISM (pyPRISM.core.PRISM) – A solved PRISM object.

• extrapolate (bool, optional) – If True, only return the value extrapolated to 𝑘 = 0 rather
than reporting the value at the lowest-k. Defaults to True.

Returns lambda – The full MatrixArray of structure factors

Return type pyPRISM.core.MatrixArray

Mathematical Definition

Λ̂𝛼,𝛽(𝑘) = 1 − 𝜌𝑠𝑖𝑡𝑒𝛼,𝛼𝐶𝛼,𝛼(𝑘)�̂�𝛼,𝛼(𝑘)

− 2𝜌𝑠𝑖𝑡𝑒𝛼,𝛽𝐶𝛼,𝛽(𝑘)�̂�𝛼,𝛽(𝑘)

− 𝜌𝑠𝑖𝑡𝑒𝛽,𝛽𝐶𝛽,𝛽�̂�𝛽,𝛽(𝑘)

+ 𝜌𝑠𝑖𝑡𝑒𝛼,𝛽 𝜌
𝑠𝑖𝑡𝑒
𝛼,𝛽𝐶𝛼,𝛽(𝑘)𝐶𝛼,𝛽(𝑘)�̂�𝛼,𝛽(𝑘)�̂�𝛼,𝛽(𝑘)

− 𝜌𝑠𝑖𝑡𝑒𝛼,𝛽 𝜌
𝑠𝑖𝑡𝑒
𝛼,𝛽𝐶𝛼,𝛼(𝑘)𝐶𝛽,𝛽(𝑘)�̂�𝛼,𝛽(𝑘)�̂�𝛼,𝛽(𝑘)

+ 𝜌𝑠𝑖𝑡𝑒𝛼,𝛼𝜌
𝑠𝑖𝑡𝑒
𝛽,𝛽𝐶𝛼,𝛼(𝑘)𝐶𝛽,𝛽(𝑘)�̂�𝛼,𝛼(𝑘)�̂�𝛽,𝛽(𝑘)

− 𝜌𝑠𝑖𝑡𝑒𝛼,𝛼𝜌
𝑠𝑖𝑡𝑒
𝛽,𝛽𝐶𝛼,𝛽(𝑘)𝐶𝛼,𝛽(𝑘)�̂�𝛼,𝛼(𝑘)�̂�𝛽,𝛽(𝑘)

Variable Definitions

• �̂�𝛼,𝛽(𝑘) Intra-molecular correlation function between sites 𝛼 and 𝛽 at a wavenumber 𝑘

• 𝑐𝛼,𝛽(𝑘) Direct correlation function between sites 𝛼 and 𝛽 at a wavenumber 𝑘

• 𝜌𝑠𝑖𝑡𝑒𝛼,𝛽 Sitewise density for sites 𝛼 and 𝛽. See pyPRISM.core.Density for details.

Description

The spinodal condition (Λ̂𝛼,𝛽(𝑘)) can be used to identify liquid-liquid macrophase separation be-
tween site types 𝛼 and 𝛽 when Λ̂𝛼,𝛽(𝑘 → 0) = 0

Warning: Using standard atomic closures (e.g, PY, HNC, MSA), PRISM theory may not predict the
correct scaling of spinodal temperatures for phase separating systems. While this issue is mitigated by using
molecular closures,[3] these closures are not currently implemented in pyPRISM. For more information, this
issue is referenced in the pyPRISM paper.[5]. We urge users to do their due diligence in understanding how
well these closures and PRISM theory perform for their systems of interest.

26 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

Warning: Passing an unsolved PRISM object to this function will still produce output based on the default
values of the attributes of the PRISM object.

References

1. Schweizer, Curro, Integral equation theory of the structure and thermodynamics of polymer blends, J.
Chem. Phys., 1989 91 (8) 5059 [link]

Example

import pyPRISM

sys = pyPRISM.System(['A','B'])

** populate system variables **

PRISM = sys.createPRISM()

PRISM.solve()

spin = pyPRISM.calculate.spinodal_conditon(PRISM)

spin_AB = spin['A','B']

pyPRISM.calculate.structure_factor module

pyPRISM.calculate.structure_factor.structure_factor(PRISM, normalize=True)
Calculate the structure factor from a PRISM object

Parameters

• PRISM (pyPRISM.core.PRISM) – A solved PRISM object.

• normalize (bool) – normalize the structure factor by the site density

Returns structureFactor – The full MatrixArray of structure factors

Return type pyPRISM.core.MatrixArray

Mathematical Definition

𝑠𝛼,𝛽(𝑘) = 𝜌𝑠𝑖𝑡𝑒𝛼,𝛽 �̂�𝛼,𝛽(𝑘) + 𝜌𝑝𝑎𝑖𝑟𝛼,𝛽 ℎ̂𝛼,𝛽(𝑘)

𝑠𝑛𝑜𝑟𝑚𝛼,𝛽 (𝑘) = 𝑠𝛼,𝛽(𝑘)/𝜌𝑠𝑖𝑡𝑒𝛼,𝛽

Variable Definitions

• �̂�𝛼,𝛽(𝑘) Intra-molecular correlation function between sites 𝛼 and 𝛽 at a wavenumber 𝑘

• ℎ̂𝛼,𝛽(𝑘) Total correlation function between sites 𝛼 and 𝛽 at a wavenumber 𝑘

• 𝜌𝑠𝑖𝑡𝑒𝛼,𝛽 , 𝜌𝑝𝑎𝑖𝑟𝛼,𝛽 Sitewise and pairwise densities for sites 𝛼 and 𝛽. See pyPRISM.core.Density for de-
tails.

Description

4.1. API 27

https://doi.org/10.1063/1.457598

pyPRISM Documentation, Release v1.0.4

The structure factor (𝑠𝛼,𝛽(𝑘)) is a Fourier-space representation of the structural correlations between
sites 𝛼 and 𝛽. The 𝑠𝛼,𝛽(𝑘) can be related to the real-space pair correlation function through a Fourier
transform. In the PRISM formalism, the 𝑠𝛼,𝛽(𝑘) can be calculated as the sum of the Fourier-space
intra-molecular and total correlation functions, as shown above.

Warning: Passing an unsolved PRISM object to this function will still produce output based on the default
values of the attributes of the PRISM object.

References

1. Chandler, D., Introduction to Modern Statistical Mechanics, Oxford U. Press, New York, 1987 [link]

2. Schweizer, Curro, Integral equation theory of the structure and thermodynamics of polymer blends, J.
Chem. Phys., 1989 91 (8) 5059 [link]

Example

import pyPRISM

sys = pyPRISM.System(['A','B'])

** populate system variables **

PRISM = sys.createPRISM()

PRISM.solve()

sk = pyPRISM.calculate.structure_factor(PRISM)

sk_BB = sk['B','B']

4.1.3 pyPRISM.closure package

While the PRISM equation specifies the base PRISM formalism, we need additional equations called closures to
numerically solve the PRISM equations for �̂�(𝑘) and 𝐶(𝑘). Closures provide a mathematical relation between the
direct correlation function 𝑐(𝑟), the pairwise interaction potential 𝑢(𝑟), and, often, the total correlation function ℎ(𝑟).
Since the closures include 𝑢(𝑟), it is through these closures that the chemical details of the system are specified.

pyPRISM.closure.AtomicClosure module

class pyPRISM.closure.AtomicClosure.AtomicClosure
Bases: object

Baseclass for all atomic closures

Note: Currently, this class doesn’t do anything besides group all of the atomic closures under a single inheri-
tance heirarchy.

28 Chapter 4. Table of Contents

https://books.google.com/books/about/Introduction_to_Modern_Statistical_Mecha.html?id=3taTh5D-CDsC
https://doi.org/10.1063/1.457598

pyPRISM Documentation, Release v1.0.4

pyPRISM.closure.Closure module

class pyPRISM.closure.Closure.Closure
Bases: object

Baseclass for all closures

Note: Currently, this class doesn’t do anything besides group all of the closures under a single inheritance
heirarchy.

pyPRISM.closure.HyperNettedChain module

class pyPRISM.closure.HyperNettedChain.HNC(apply_hard_core=False)
Bases: pyPRISM.closure.HyperNettedChain.HyperNettedChain

Alias of HyperNettedChain

class pyPRISM.closure.HyperNettedChain.HyperNettedChain(apply_hard_core=False)
Bases: pyPRISM.closure.AtomicClosure.AtomicClosure

HyperNettedChain closure

Mathematial Definition

𝑐𝛼,𝛽(𝑟) = exp (𝛾𝛼,𝛽(𝑟) − 𝑈𝛼,𝛽(𝑟)) − 1.0 − 𝛾𝛼,𝛽(𝑟)

𝛾𝛼,𝛽(𝑟) = ℎ𝛼,𝛽(𝑟) − 𝑐𝛼,𝛽(𝑟)

Variables Definitions

• ℎ𝛼,𝛽(𝑟) Total correlation function value at distance 𝑟 between sites 𝛼 and 𝛽.

• 𝑐𝛼,𝛽(𝑟) Direct correlation function value at distance 𝑟 between sites 𝛼 and 𝛽.

• 𝑈𝛼,𝛽(𝑟) Interaction potential value at distance 𝑟 between sites 𝛼 and 𝛽.

Description

The Hypernetted Chain Closure (HNC) is derived by expanding the direct correlation function, 𝑐(𝑟),
in powers of density shift from a reference state. See Reference [1] for a full derivation and discussion
of this closure.

The change of variables is necessary in order to use potentials with hard cores in the computational
setting. Written in the standard form, this closure diverges with divergent potentials, which makes it
impossible to numerically solve.

Compared to the PercusYevick closure, the HNC closure is a more accurate approximation of the
full expression for the direct correlation function. Depsite this, it can produce inaccurate, long-range
fluctuations that make it difficult to employ in phase-separating systems. The HNC closure performs
well for systems where there is a disparity in site diameters and is typically used for the larger site.

References

1. Hansen, J.P.; McDonald, I.R.; Theory of Simple Liquids; Chapter 4, Section 4; 4th Edition (2013), Elsevier
[link]

4.1. API 29

https://www.sciencedirect.com/science/book/9780123870322

pyPRISM Documentation, Release v1.0.4

Example

import pyPRISM

sys = pyPRISM.System(['A','B'])

sys.closure['A','A'] = pyPRISM.closure.PercusYevick()
sys.closure['A','B'] = pyPRISM.closure.PercusYevick()
sys.closure['B','B'] = pyPRISM.closure.HypernettedChain()

** finish populating system object **

PRISM = sys.createPRISM()

PRISM.solve()

__init__(apply_hard_core=False)
Contstructor

Parameters apply_hard_core (bool) – If True, the total correlation function will be as-
sumed to be -1 inside the core (𝑟𝑖,𝑗 < (𝑑𝑖 + 𝑑𝑗)/2.0) and the closure will not be applied in
this region. Defaults to True.

calculate(r, gamma)
Calculate direct correlation function based on supplied 𝛾

Parameters

• r (np.ndarray) – array of real-space values associated with 𝛾

• gamma (np.ndarray) – array of 𝛾 values used to calculate the direct correlation func-
tion

pyPRISM.closure.MartynovSarkisov module

class pyPRISM.closure.MartynovSarkisov.MS(apply_hard_core=False)
Bases: pyPRISM.closure.MartynovSarkisov.MartynovSarkisov

Alias of MartynovSarkisov

class pyPRISM.closure.MartynovSarkisov.MartynovSarkisov(apply_hard_core=False)
Bases: pyPRISM.closure.AtomicClosure.AtomicClosure

MartynovSarkisov closure

Mathematial Definition

𝑐𝛼,𝛽(𝑟) =

(︂
exp

(︂√︁
𝛾𝛼,𝛽(𝑟) − 𝑈𝛼,𝛽(𝑟) − 0.5

)︂
− 1.0

)︂
− 1.0 − 𝛾𝛼,𝛽(𝑟)

𝛾𝛼,𝛽(𝑟) = ℎ𝛼,𝛽(𝑟) − 𝑐𝛼,𝛽(𝑟)

Variables Definitions

• ℎ𝛼,𝛽(𝑟) Total correlation function value at distance 𝑟 between sites 𝛼 and 𝛽.

• 𝑐𝛼,𝛽(𝑟) Direct correlation function value at distance 𝑟 between sites 𝛼 and 𝛽.

• 𝑈𝛼,𝛽(𝑟) Interaction potential value at distance 𝑟 between sites 𝛼 and 𝛽.

30 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

Description

The Martynov-Sarkisov (MS) closure is described as a generalization of the HyperNettedChain clo-
sure. See the references below for derivation and usage examples.

The change of variables is necessary in order to use potentials with hard cores in the computational
setting. Written in the standard form, this closure diverges with divergent potentials, which makes it
impossible to numerically solve.

The MS closure has been shown to be very accurate for hard-sphere spherical molecules and for
high-density hard-core polymer systems.

References

1. Martynov, G.A.; Sarkisov, G.N.; Mol. Phys. 49. 1495 (1983) [link]

2. Yethiraj, A.; Schweizer, K.S.; J. Chem. Phys. 97. 1455 (1992) [link]

Example

import pyPRISM

sys = pyPRISM.System(['A','B'])

sys.closure['A','A'] = pyPRISM.closure.PercusYevick()
sys.closure['A','B'] = pyPRISM.closure.PercusYevick()
sys.closure['B','B'] = pyPRISM.closure.MartynovSarkisov()

** finish populating system object **

PRISM = sys.createPRISM()

PRISM.solve()

__init__(apply_hard_core=False)
Contstructor

Parameters apply_hard_core (bool) – If True, the total correlation function will be as-
sumed to be -1 inside the core (𝑟𝑖,𝑗 < (𝑑𝑖 + 𝑑𝑗)/2.0) and the closure will not be applied in
this region.

calculate(r, gamma)
Calculate direct correlation function based on supplied 𝛾

Parameters

• r (np.ndarray) – array of real-space values associated with 𝛾

• gamma (np.ndarray) – array of 𝛾 values used to calculate the direct correlation func-
tion

pyPRISM.closure.MeanSphericalApproximation module

class pyPRISM.closure.MeanSphericalApproximation.MSA(apply_hard_core=False)
Bases: pyPRISM.closure.MeanSphericalApproximation.MeanSphericalApproximation

Alias of MeanSphericalApproximation

4.1. API 31

https://doi.org/10.1080/00268978300102111
https://doi.org/10.1063/1.464465

pyPRISM Documentation, Release v1.0.4

class pyPRISM.closure.MeanSphericalApproximation.MeanSphericalApproximation(apply_hard_core=False)
Bases: pyPRISM.closure.AtomicClosure.AtomicClosure

Mean Spherical Approximation closure

Mathematial Definition

𝑐𝛼,𝛽(𝑟) = −𝑈𝛼,𝛽(𝑟)

Variables Definitions

• 𝑐𝛼,𝛽(𝑟) Direct correlation function value at distance 𝑟 between sites 𝛼 and 𝛽.

• 𝑈𝛼,𝛽(𝑟) Interaction potential value at distance 𝑟 between sites 𝛼 and 𝛽.

Description

The Mean Spherical Approximation (MSA) closure assumes an interaction potential that contains a
hard-core interaction and a tail interaction. See Reference [1] for a derivation and discussion of this
closure.

The MSA does a good job of describing the properties of the square-well fluid, and allows for the
analytical solution of the PRISM/RISM equations for some systems. The MSA closure reduces to
the PercusYevick closure if the tail is ignored.

References

1. Hansen, J.P.; McDonald, I.R.; Theory of Simple Liquids; Chapter 4, Section 4; 4th Edition (2013), Elsevier
[link]

Example

import pyPRISM

sys = pyPRISM.System(['A','B'])

sys.closure['A','A'] = pyPRISM.closure.PercusYevick()
sys.closure['A','B'] = pyPRISM.closure.PercusYevick()
sys.closure['B','B'] = pyPRISM.closure.MeanSphericalApproximation()

** finish populating system object **

PRISM = sys.createPRISM()

PRISM.solve()

__init__(apply_hard_core=False)
Contstructor

Parameters apply_hard_core (bool) – If True, the total correlation function will be as-
sumed to be -1 inside the core (𝑟𝑖,𝑗 < (𝑑𝑖 + 𝑑𝑗)/2.0) and the closure will not be applied in
this region.

calculate(r, gamma)
Calculate direct correlation function based on supplied 𝛾

Parameters

32 Chapter 4. Table of Contents

https://www.sciencedirect.com/science/book/9780123870322

pyPRISM Documentation, Release v1.0.4

• r (np.ndarray) – array of real-space values associated with 𝛾

• gamma (np.ndarray) – array of 𝛾 values used to calculate the direct correlation func-
tion

pyPRISM.closure.MolecularClosure module

class pyPRISM.closure.MolecularClosure.MolecularClosure
Bases: object

Baseclass for all molecular closures

Note: Currently, this class doesn’t do anything besides group all of the molecular closures under a single
inheritance heirarchy.

pyPRISM.closure.PercusYevick module

class pyPRISM.closure.PercusYevick.PY(apply_hard_core=False)
Bases: pyPRISM.closure.PercusYevick.PercusYevick

Alias of PercusYevick

class pyPRISM.closure.PercusYevick.PercusYevick(apply_hard_core=False)
Bases: pyPRISM.closure.AtomicClosure.AtomicClosure

Percus Yevick closure evaluated in terms of a change of variables

Mathematial Definition

𝑐𝛼,𝛽(𝑟) = (exp(−𝑈𝛼,𝛽(𝑟)) − 1.0)(1.0 + 𝛾𝛼,𝛽(𝑟))

𝛾𝛼,𝛽(𝑟) = ℎ𝛼,𝛽(𝑟) − 𝑐𝛼,𝛽(𝑟)

Variables Definitions

• ℎ𝛼,𝛽(𝑟) Total correlation function value at distance 𝑟 between sites 𝛼 and 𝛽.

• 𝑐𝛼,𝛽(𝑟) Direct correlation function value at distance 𝑟 between sites 𝛼 and 𝛽.

• 𝑈𝛼,𝛽(𝑟) Interaction potential value at distance 𝑟 between sites 𝛼 and 𝛽.

Description

The Percus-Yevick (PY) is derived by expanding the exponential of the direct correlation function,
𝑐𝛼,𝛽(𝑟), in powers of density shift from a reference state. See Reference [1] for a full derivation.

The change of variables is necessary in order to use potentials with hard cores in the computational
setting. Written in the standard form, this closure diverges with divergent potentials, which makes it
impossible to numerically solve.

This closure has been shown to be accurate for systems with hard cores (strongly repulsive at short
distances) and when the potential is short ranged.

4.1. API 33

pyPRISM Documentation, Release v1.0.4

References

1. Hansen, J.P.; McDonald, I.R.; Theory of Simple Liquids; Chapter 4, Section 4; 4th Edition (2013), Elsevier
[link]

Example

import pyPRISM

sys = pyPRISM.System(['A','B'])

sys.closure['A','A'] = pyPRISM.closure.PercusYevick()
sys.closure['A','B'] = pyPRISM.closure.PercusYevick()
sys.closure['B','B'] = pyPRISM.closure.HypernettedChain()

** finish populating system object **

PRISM = sys.createPRISM()

PRISM.solve()

__init__(apply_hard_core=False)
Contstructor

Parameters apply_hard_core (bool) – If True, the total correlation function will be as-
sumed to be -1 inside the core (𝑟𝑖,𝑗 < (𝑑𝑖 + 𝑑𝑗)/2.0) and the closure will not be applied in
this region.

calculate(r, gamma)
Calculate direct correlation function based on supplied 𝛾

Parameters

• r (np.ndarray) – array of real-space values associated with 𝛾

• gamma (np.ndarray) – array of 𝛾 values used to calculate the direct correlation func-
tion

4.1.4 pyPRISM.omega package

In PRISM, the molecular structure of molecules is encoded into intra-molecular correlation functions called �̂�(𝑘).
All connectivity and intra-molecular excluded volume is contained in these functions. During a PRISM calculation,
�̂�(𝑘) are specified as input and are held fixed during the solution procedure. While this leads to a decoupling of the
intra-molecular and inter-molecular correlations within a given PRISM calculation, methods such as self-consistent
PRISM offer a route to mitigating this potential problem. See Self-Consistent PRISM Method for more details.

pyPRISM offers several analytical form factors which are listed below. If you have an analytical �̂�(𝑘) that is not listed,
please consider filing an Issue on GitHub, implementing the �̂�(𝑘) and sharing with the community. See Contributing
for more details.

Alternatively, if no analytical form exists, �̂�(𝑘) can be calculated using a simulation. The pyPRISM.trajectory.
Debyer class implements the Debye summation method for calculating �̂�(𝑘) from simulation.

Finally, the FromArray and FromFile classes exist for loading �̂�(𝑘) calculated in memory or from another pro-
gram.

34 Chapter 4. Table of Contents

https://www.sciencedirect.com/science/book/9780123870322
https://github.com/usnistgov/pyPRISM/issues

pyPRISM Documentation, Release v1.0.4

pyPRISM.omega.DiscreteKoyama module

class pyPRISM.omega.DiscreteKoyama.DiscreteKoyama(sigma, l, length, lp)
Bases: pyPRISM.omega.Omega.Omega

Semi-flexible Koyama-based intra-molecular correlation function

Mathematial Definition

�̂�(𝑘) =
sin(𝐵𝑘)

𝐵𝑘
exp(−𝐴2𝑘2)

𝐴2 =
⟨𝑟2𝛼,𝛽⟩(1 − 𝐶)

6

𝐵2 = 𝐶⟨𝑟2𝛼,𝛽⟩

𝐶2 =
1

2

(︃
5 − 3

⟨𝑟4𝛼,𝛽⟩
⟨𝑟2𝛼,𝛽⟩

)︃
Variable Definitions

• �̂�(𝑘) intra-molecular correlation function at wavenumber 𝑘

• ⟨𝑟2𝛼,𝛽⟩ second moment of the distance distribution between sites 𝛼 and 𝛽. Please see equation (17) of the
Reference [1] cited below for the mathematical representation.

• ⟨𝑟4𝛼,𝛽⟩ fourth moment of the distance distribution between sites 𝛼 and 𝛽. Please see equations (18-24) of
the reference cited below for the mathematical representation.

Description

The discrete Koyama �̂�(𝑘) was developed to represent a wormlike chain with semiflexibility. This
scheme interpolates between the rigid-rod and the Gaussian chain limits to represent a chain with a
given persistence length. This form for �̂�(𝑘) has been shown to match the structure of molecular
dynamics simulations of Kremer-Grest style bead-spring polymer models.

References

1. Honnell, K.G., J.G. Curro, and K.S. Schweizer, LOCAL-STRUCTURE OF SEMIFLEXIBLE POLYMER
MELTS. Macromolecules, 1990. 23(14): p. 3496-3505. [link]

Example

import pyPRISM
import numpy as np
import matplotlib.pyplot as plt

#calculate Fourier space domain and omega values
domain = pyPRISM.domain(dr=0.1,length=1000)
omega = pyPRISM.omega.DiscreteKoyama(sigma=1.0,l=1.0,length=100,lp=1.43)
x = domain.k
y = omega.calculate(x)

#plot the results using matplotlib
plt.plot(x,y)
plt.gca().set_xscale("log", nonposx='clip')
plt.gca().set_yscale("log", nonposy='clip')

(continues on next page)

4.1. API 35

https://doi.org/10.1021/ma00216a018

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

plt.show()

#define a PRISM system and set omega(k) for type A
sys = pyPRISM.System(['A','B'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)
sys.omega['A','A'] = pyPRISM.omega.DiscreteKoyama(sigma=1.0,l=1.0,length=100,
→˓lp=1.43)

__init__(sigma, l, length, lp)
Constructor

Parameters

• sigma (float) – contact distance between sites (i.e. site diameter)

• l (float) – bond length

• length (float) – number of monomers/sites in the chain

• lp (float) – persistence length of chain

calculate(k)
Return value of �̂� at supplied 𝑘

Parameters k (np.ndarray, float) – array of wavenumber values to calculate 𝜔 at

cos_avg(epsilon)
First moment of bond angle distribution

cos_sq_avg(epsilon)
Second moment of bond angle distribution

density_correction(npts=1000)
Correction for density due to non-physical overlaps

Note: See Equation 28 in Reference [1] for more details.

Parameters npts (int) – number of points to use in numerical integral

density_correction_kernel(r)
Correction for density due to non-physical overlaps

Note: See Equation 28 in Reference [1] for more details.

Parameters r (np.ndarray, float) – array of real-space positions to calculate 𝜔 at

kernel_base(n)
Calculates the second and fourth moments of the site separate distance distributions

Note: See Equation 18 in Reference [1] for more details.

Parameters n (int) – Integer separation distance along chain.

36 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

koyama_kernel_fourier(k, n)
Kernel for calculating omega in Fourier-Space

Note: See Equation 16 in Reference [1] for more details.

Parameters

• k (np.ndarray, float) – array of wavenumber values to calculate 𝜔 at

• n (int) – Integer separation distance along chain.

koyama_kernel_real(r, n)
Kernel for calculating omega in Real-Space

Note: See Equation 12 in Reference [1] for more details.

Parameters

• r (np.ndarray, float) – array of real-space positions to calculate 𝜔 at

• n (int) – Integer separation distance along chain.

pyPRISM.omega.FreelyJointedChain module

class pyPRISM.omega.FreelyJointedChain.FJC(length, l)
Bases: pyPRISM.omega.FreelyJointedChain.FreelyJointedChain

Alias of FreelyJointedChain

class pyPRISM.omega.FreelyJointedChain.FreelyJointedChain(length, l)
Bases: pyPRISM.omega.Omega.Omega

Freely jointed chain intra-molecular correlation function

Mathematical Definition

�̂�(𝑘) =
1 − 𝐸2 − 2𝐸

𝑁 + 2𝐸𝑁+1

𝑁

(1 − 𝐸)2

𝐸 =
sin(𝑘𝑙)

𝑘𝑙

Variable Definitions

• �̂�(𝑘) intra-molecular correlation function at wavenumber 𝑘

• 𝑁 number of repeat units in chain

• 𝑙 bond-length

Description

The freely-jointed chain is an ideal polymer chain model that assumes a constant bond length 𝑙 and
no correlations between the directions of different bond vectors (i.e. < 𝑐𝑜𝑠(𝜃𝑖𝑗) >= 0). In other
words, monomer segments are assumed to have no intra-molecular excluded volume.

4.1. API 37

pyPRISM Documentation, Release v1.0.4

References

1. Schweizer, K.S.; Curro, J.G.; Integral-Equation Theory of Polymer Melts - Intramolecular Structure, Local
Order, and the Correlation Hole, Macromolecules, 1988, 21 (10), pp 3070 [link]

2. Rubinstein, M; Colby, R.H; Polymer Physics. 2003. Oxford University Press.

Example

import pyPRISM
import numpy as np
import matplotlib.pyplot as plt

#calculate Fourier space domain and omega values
domain = pyPRISM.domain(dr=0.1,length=1000)
omega = pyPRISM.omega.FreelyJointedChain(length=100,l=1.0)
x = domain.k
y = omega.calculate(x)

#plot using matplotlib
plt.plot(x,y)
plt.gca().set_xscale("log", nonposx='clip')
plt.gca().set_yscale("log", nonposy='clip')

plt.show()

#define a PRISM system and set omega(k) for type A
sys = pyPRISM.System(['A','B'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)
sys.omega['A','A'] = pyPRISM.omega.FreelyJointedChain(length=100,l=1.0)

__init__(length, l)
Constructor

Parameters

• length (float) – number of monomers/sites in Freely-jointed chain

• l (float) – bond length

calculate(k)
Return value of �̂� at supplied 𝑘

Parameters k (np.ndarray) – array of wavenumber values to calculate 𝜔 at

pyPRISM.omega.FromArray module

class pyPRISM.omega.FromArray.FromArray(omega, k=None)
Bases: pyPRISM.omega.Omega.Omega

Read intra-molecular correlations from a list or array

This class reads the omega from a Python list or Numpy array.

omega
Intra-molecular omega

Type np.ndarray

38 Chapter 4. Table of Contents

https://doi.org/10.1021/ma00188a027

pyPRISM Documentation, Release v1.0.4

k
Domain of the array data. If provided, this will be checked against the Fourier-space grid specified in the
pyPRISM.core.Domain. An exception will be raised is they do not match.

Type np.narray, optional

Example

import pyPRISM
import numpy as np
import matplotlib.pyplot as plt

#set all omega(k) = 1 for type A
sys = pyPRISM.System(['A','B'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)
omega = np.ones(sys.domain.k.shape[0])
sys.omega['A','A'] = pyPRISM.omega.FromArray(omega)
x = sys.domain.k
y = sys.omega['A','A'].calculate(x)

#plot using matplotlib
plt.plot(x,y)
plt.gca().set_xscale("log", nonposx='clip')
plt.gca().set_yscale("log", nonposy='clip')

plt.show()

__init__(omega, k=None)
Constructor

Parameters

• omega (list,np.ndarray) – Python list or Numpy array containing values of omega
as a function of wavenumber 𝑘.

• k (np.ndarray, optional) – Python list of Numpy array containing values of k. These must
match the k values stored in the pyPRISM.core.Domain or an exception will be raised.

calculate(k)
Return value of �̂� at supplied 𝑘

Parameters k (np.ndarray) – array of wavenumber values to calculate 𝜔 at

pyPRISM.omega.FromFile module

class pyPRISM.omega.FromFile.FromFile(fileName)
Bases: pyPRISM.omega.Omega.Omega

Read intra-molecular correlations from file

This class reads a one or two column file using Numpy’s loadtxt function. A one-column file is expected to only
contain intra-molecular correlation data, while a two-column file contains the k values of the data in the first
column as well. If the k-values are provided, an extra check to make sure that the file data matches the same
k-space grid of the domain.

fileName
full path + name to column file

Type str

4.1. API 39

pyPRISM Documentation, Release v1.0.4

Example

import pyPRISM
import numpy as np
import matplotlib.pyplot as plt

#set type A omega(k) from a file
sys = pyPRISM.System(['A','B'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)
fileName = './test_example_filename.txt'
sys.omega['A','A'] = pyPRISM.omega.FromFile(fileName)
x = sys.domain.k
y = sys.omega['A','A'].calculate(x)

#plot using matplotlib
plt.plot(x,y)
plt.gca().set_xscale("log", nonposx='clip')
plt.gca().set_yscale("log", nonposy='clip')

plt.show()

__init__(fileName)
Constructor

Parameters fileName (str) – path to textfile containing values of omega as a function of
wavenumber, k.

calculate(k)
Return value of �̂� at supplied 𝑘

Parameters k (np.ndarray) – array of wavenumber values to calculate 𝜔 at

pyPRISM.omega.Gaussian module

class pyPRISM.omega.Gaussian.Gaussian(sigma, length)
Bases: pyPRISM.omega.Omega.Omega

Gaussian intra-molecular correlation function

Mathematical Definition

�̂�(𝑘) =
1 − 𝐸2 − 2𝐸

𝑁 + 2𝐸𝑁+1

𝑁

(1 − 𝐸)2

𝐸 = exp(−𝑘2𝜎2/6)

Variable Definitions

• �̂�(𝑘) intra-molecular correlation function at wavenumber 𝑘

• 𝑁 number of monomers/sites in gaussian chain

• 𝜎 contact distance between sites (i.e. site diameter)

Description

The Gaussian chain is an ideal polymer chain model that assumes a random walk between successive
monomer segments along the chain with no intra-molecular excluded volume.

40 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

References

1. Schweizer, K.S.; Curro, J.G.; Integral-Equation Theory of Polymer Melts - Intramolecular Structure, Local
Order, and the Correlation Hole, Macromolecules, 1988, 21 (10), pp 3070 [link]

2. Rubinstein, M; Colby, R.H; Polymer Physics. 2003. Oxford University Press.

Example

import pyPRISM
import numpy as np
import matplotlib.pyplot as plt

#calculate Fourier space domain and omega values
domain = pyPRISM.domain(dr=0.1,length=1000)
omega = pyPRISM.omega.Gaussian(sigma=1.0,length=100)
x = domain.k
y = omega.calculate(x)

#plot using matplotlib
plt.plot(x,y)
plt.gca().set_xscale("log", nonposx='clip')
plt.gca().set_yscale("log", nonposy='clip')

plt.show()

#Define a PRISM system and set omega(k) for type A
sys = pyPRISM.System(['A','B'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)
sys.omega['A','A'] = pyPRISM.omega.Gaussian(sigma=1.0,length=100)

__init__(sigma, length)
Constructor

Parameters

• sigma (float) – contact distance between sites (site diameter)

• length (float) – number of monomers/sites in gaussian chain

calculate(k)
Return value of �̂� at supplied 𝑘

Parameters k (np.ndarray) – array of wavenumber values to calculate 𝜔 at

pyPRISM.omega.GaussianRing module

class pyPRISM.omega.GaussianRing.GaussianRing(sigma, length)
Bases: pyPRISM.omega.Omega.Omega

Gaussian ring polymer intra-molecular correlation function

Mathematical Definition

�̂�(𝑘) = 1 + 2𝑁−1
𝑁−1∑︁
𝑡=1

(𝑁 − 𝑡) exp(
−𝑘2𝜎2𝑡(𝑁 − 𝑡)

6𝑁
)

Variable Definitions

4.1. API 41

https://doi.org/10.1021/ma00188a027

pyPRISM Documentation, Release v1.0.4

• �̂�(𝑘) intra-molecular correlation function at wavenumber 𝑘

• 𝑁 number of monomers/sites in gaussian ring

• 𝜎 contact distance between sites (i.e. site diameter)

Description

The Gaussian ring is an ideal model for a cyclic chain that assumes a random walk between successive monomer
segments along the chain, constrained such that ends join together to form a ring with no intra-molecular ex-
cluded volume.

References

Schweizer, K.S.; Curro, J.G.; Integral-Equation Theory of Polymer Melts - Intramolecular Structure, Local
Order, and the Correlation Hole, Macromolecules, 1988, 21 (10), pp 3070, doi:10.1021/ma00188a027

Example

import pyPRISM
import numpy as np
import matplotlib.pyplot as plt

#calculate Fourier space domain and omega values
domain = pyPRISM.domain(dr=0.1,length=1000)
omega = pyPRISM.omega.GaussianRing(sigma=1.0,length=100)
x = domain.k
y = omega.calculate(x)

#plot it!
plt.plot(x,y)
plt.gca().set_xscale("log", nonposx='clip')
plt.gca().set_yscale("log", nonposy='clip')

plt.show()

#Define a PRISM system and set omega(k) for type A
sys = pyPRISM.System(['A','B'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)
sys.omega['A','A'] = pyPRISM.omega.GaussianRing(sigma=1.0,length=100)

__init__(sigma, length)
Constructor

Parameters

• sigma (float) – contact distance between sites (site diameter)

• length (float) – number of monomers/sites in gaussian ring

calculate(k)
Return value of �̂� at supplied 𝑘

Parameters k (np.ndarray) – array of wavenumber values to calculate 𝜔 at

42 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

pyPRISM.omega.NoIntra module

class pyPRISM.omega.NoIntra.NoIntra
Bases: pyPRISM.omega.Omega.Omega

Inter-molecule intra-molecular correlation function

Description This is a convenience class for specifying the intra-molecular correlations between sites which are
never in the same molecule. Because they have no intra-molecular correlation, this function returns zero
at all wavenumber.

Example

import pyPRISM
import numpy as np
import matplotlib.pyplot as plt

#set omega(k) for types A,B to have no intra-molecular
#correlations (sites A and B are never on the same molecule)
sys = pyPRISM.System(['A','B'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)
sys.omega['A','B'] = pyPRISM.omega.NoIntra()
x = sys.domain.k
y = sys.omega['A','B'].calculate(x)

#plot using matplotlib
plt.plot(x,y)
plt.gca().set_xscale("log", nonposx='clip')
plt.gca().set_yscale("log", nonposy='clip')

plt.show()

calculate(k)
Return value of �̂� at supplied 𝑘

Parameters k (np.ndarray) – array of wavenumber values to calculate 𝜔 at

pyPRISM.omega.NonOverlappingFreelyJointedChain module

class pyPRISM.omega.NonOverlappingFreelyJointedChain.NFJC(length, l)
Bases: pyPRISM.omega.NonOverlappingFreelyJointedChain.
NonOverlappingFreelyJointedChain

Alias of NonOverlappingFreelyJointedChain

class pyPRISM.omega.NonOverlappingFreelyJointedChain.NonOverlappingFreelyJointedChain(length,
l)

Bases: pyPRISM.omega.Omega.Omega

Freely jointed chain with excluded volume intra-molecular correlation function

Warning: The numerical integrations required for the NFJC omega calculation are slow and scale poorly
with chain length so this omega may take minutes or longer to calculate even for modest chain lengths e.g.
N=200.

4.1. API 43

pyPRISM Documentation, Release v1.0.4

Mathematical Definition

�̂�(𝑘) = �̂�𝑖𝑑(𝑘) +
2

𝑁

𝑁−1∑︁
𝜏=2

(𝑁 − 𝜏)[�̂�𝜏 (𝑘) − (sin(𝑘)/𝑘)𝜏]

𝜏 = |𝛼− 𝛽|

Variable Definitions

• �̂�(𝑘) intra-molecular correlation function at wavenumber 𝑘

• �̂�𝑖𝑑(𝑘) intra-molecular correlation function for the ideal freely-jointed chain at wavenumber 𝑘. Please see
equation (15) of Reference [1] for the mathematical representation.

• �̂�𝜏 (𝑘) Please see equations (17,18,21) of Reference [1] for the mathematical representation.

• 𝑁 number of repeat units in chain

• 𝜏 number of monomers along chain separating sites 𝛼 and 𝛽.

Description

The non-overlapping freely-jointed chain is an adjustment to the ideal freely jointed chain model that
includes the effects of the excluded volume of monomer segments (i.e. bonds are not free to rotate
over all angles). This model assumes a constant bond length 𝑙.

References

1. Schweizer, K.S.; Curro, J.G.; Integral-Equation Theory of Polymer Melts - Intramolecular Structure, Local
Order, and the Correlation Hole, Macromolecules, 1988, 21 (10), pp 3070 [link]

Example

import pyPRISM
import numpy as np
import matplotlib.pyplot as plt

#calculate Fourier space domain and omega values
domain = pyPRISM.domain(dr=0.1,length=1000)
omega = pyPRISM.omega.NonOverlappingFreelyJointedChain(length=100,l=1.0)
x = domain.k
y = omega.calculate(x)

#plot using matplotlib
plt.plot(x,y)
plt.gca().set_xscale("log", nonposx='clip')
plt.gca().set_yscale("log", nonposy='clip')

plt.show()

#define a PRISM system and set omega(k) for type A
sys = pyPRISM.System(['A','B'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)
sys.omega['A','A'] = pyPRISM.omega.NonOverlappingFreelyJointedChain(length=100,
→˓l=1.0)

__init__(length, l)
Constructor

44 Chapter 4. Table of Contents

https://doi.org/10.1021/ma00188a027

pyPRISM Documentation, Release v1.0.4

Parameters

• length (float) – number of monomers/sites in non-overlapping freely-jointed chain

• l (float) – bond length

calculate(k)
Return value of �̂� at supplied 𝑘

Parameters k (np.ndarray) – array of wavenumber values to calculate 𝜔 at

pyPRISM.omega.Omega module

class pyPRISM.omega.Omega.Omega
Bases: object

Baseclass for all intra-molecular correlation functions

Note: Currently, this class doesn’t do anything besides group all of the intra-molecular correlation functions
under a single inheritance heirarchy. This will change as needs arise.

pyPRISM.omega.SingleSite module

class pyPRISM.omega.SingleSite.SingleSite
Bases: pyPRISM.omega.Omega.Omega

Single-site intra-molecular correlation function

This class is useful for dealing with single bead molecules such as solvents or large spherical particles, it sets
the value of the intra-molecular correlation function to 1 for all wavenumbers.

Example

import pyPRISM
import numpy as np

#set omega(k) for type A to 1 (single spherical site per molecule)
sys = pyPRISM.System(['A','B'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)
sys.omega['A','A'] = pyPRISM.omega.SingleSite()
x = sys.domain.k
y = sys.omega['A','A'].calculate(x)

#plot using matplotlib
plt.plot(x,y)
plt.gca().set_xscale("log", nonposx='clip')
plt.gca().set_yscale("log", nonposy='clip')

plt.show()

calculate(k)
Return value of �̂� at supplied 𝑘

Parameters k (np.ndarray) – array of wavenumber values to calculate 𝜔 at

4.1. API 45

pyPRISM Documentation, Release v1.0.4

4.1.5 pyPRISM.potential package

PRISM uses pairwise decomposed potentials to describe the interactions between site-types. pyPRISM provides the
potentials listed below. If you have potential that is not listed, please consider filing an Issue on GitHub, implementing
the potential, and sharing with the community. See Contributing for more details.

pyPRISM.potential.Exponential module

class pyPRISM.potential.Exponential.Exponential(epsilon, alpha, sigma=None,
high_value=1000000.0)

Bases: pyPRISM.potential.Potential.Potential

Exponential attractive interactions

Mathematical Definition

𝑈𝛼,𝛽(𝑟 ≥ 𝜎𝛼,𝛽) = 𝜖𝛼,𝛽 exp

(︂
−𝑟 − 𝜎𝛼,𝛽

𝛼

)︂
𝑈𝛼,𝛽(𝑟 < 𝜎𝛼,𝛽) = 𝐶ℎ𝑖𝑔ℎ

Variable Definitions

𝛼 Width of exponential attraction

𝜎𝛼,𝛽 Contact distance of interactions between sites 𝛼 and 𝛽.

𝜖𝛼,𝛽 Interaction strength between sites 𝛼 and 𝛽.

𝐶ℎ𝑖𝑔ℎ High value used to approximate an infinite potential due to overlap

Description

This potential models an exponential-like attraction between sites with a specified site size and con-
tact distance. For example, in Reference [1] this potential is used to model the attraction between a
nanoparticle and monomers of a polymer chain.

References

1. Hooper, J.B. and K.S. Schweizer, Theory of phase separation in polymer nanocomposites. Macro-
molecules, 2006. 39(15): p. 5133-5142. [link]

Example

import pyPRISM

#Define a PRISM system and set the A-B interaction potential
sys = pyPRISM.System(['A','B'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)
sys.potential['A','B'] = pyPRISM.potential.Exponential(epsilon=1.0,sigma=8.0,
→˓alpha=0.5,high_value=10**6)

Warning: If sigma is specified such that it does not fall on the solution grid of the Domain object specified
in System, then the sigma will effectively be rounded. A warning should be emitted during the construction
of a PRISM object if this occurs.

46 Chapter 4. Table of Contents

https://github.com/usnistgov/pyPRISM/issues
https://doi.org/10.1021/ma060577m

pyPRISM Documentation, Release v1.0.4

__init__(epsilon, alpha, sigma=None, high_value=1000000.0)
Constructor

Parameters

• epsilon (float) – Strength of attraction

• alpha (float) – Range of attraction

• sigma (float, optional) – Contact distance. If not specified, sigma will be calculated from
the diameters specified in the System object.

• high_value (float, optional) – High value used to approximate an infinite potential due
to overlap

calculate(r)
Calculate the value of the potential

r
Array of pair distances at which to calculate potential values

Type float np.ndarray

pyPRISM.potential.HardCoreLennardJones module

class pyPRISM.potential.HardCoreLennardJones.HardCoreLennardJones(epsilon,
sigma=None,
high_value=1000000.0)

Bases: pyPRISM.potential.Potential.Potential

12-6 Lennard-Jones potential with Hard Core

Warning: This potential uses a slightly different form than what is implemented for the classic LJ potential.
This means that the epsilon in the LJ and HCLJ potentials will not correspond to the same interaction
strengths.

Mathematical Definition

𝑈𝛼,𝛽(𝑟 > 𝜎𝛼,𝛽) = 𝜖𝛼,𝛽

[︂(︁𝜎𝛼,𝛽

𝑟

)︁12
− 2

(︁𝜎𝛼,𝛽

𝑟

)︁6]︂
𝑈𝛼,𝛽(𝑟 ≤ 𝜎𝛼,𝛽) = 𝐶ℎ𝑖𝑔ℎ

Variable Definitions

𝜖𝛼,𝛽 Strength of interaction (attraction or repulsion) between sites 𝛼 and 𝛽.

𝜎𝛼,𝛽 Length scale of interaction between sites 𝛼 and 𝛽.

𝑟 Distance between sites.

𝐶ℎ𝑖𝑔ℎ High value used to approximate an infinite potential due to overlap

Description

Unlike the classic LJ potential, the HCLJ potential has an infinitely hard core and can handle negative
and positive epsilons, corresponding to attractive and repulsive interactions.

4.1. API 47

pyPRISM Documentation, Release v1.0.4

References

1. Yethiraj, A. and K.S. Schweizer, INTEGRAL-EQUATION THEORY OF POLYMER BLENDS - NU-
MERICAL INVESTIGATION OF MOLECULAR CLOSURE APPROXIMATIONS. Journal of Chemical
Physics, 1993. 98(11): p. 9080-9093. [link]

Example

import pyPRISM

#Define a PRISM system and set the A-B interaction potential
sys = pyPRISM.System(['A','B'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)
sys.potential['A','B'] = pyPRISM.potential.HardCoreLennardJones(epsilon=1.0,
→˓sigma=1.0,high_value=10**6)

Warning: If sigma is specified such that it does not fall on the solution grid of the Domain object specified
in System, then the sigma will effectively be rounded. A warning should be emitted during the construction
of a PRISM object if this occurs.

__init__(epsilon, sigma=None, high_value=1000000.0)
Constructor

Parameters

• epsilon (float) – Depth of attractive well

• sigma (float, optional) – Contact distance. If not specified, sigma will be calculated from
the diameters specified in the System object.

• high_value (float, optional) – High value used to approximate an infinite potential due
to overlap

calculate(r)
Calculate value of potential

r
Array of pair distances at which to calculate potential values

Type float np.ndarray

pyPRISM.potential.HardSphere module

class pyPRISM.potential.HardSphere.HardSphere(sigma=None, high_value=1000000.0)
Bases: pyPRISM.potential.Potential.Potential

Simple hard sphere potential

Mathematical Definition

𝑈𝛼,𝛽(𝑟 > 𝜎𝛼,𝛽) = 0.0

𝑈𝛼,𝛽(𝑟 ≤ 𝜎𝛼,𝛽) = 𝐶ℎ𝑖𝑔ℎ

Variable Definitions

𝜎𝛼,𝛽 Length scale of interaction between sites 𝛼 and 𝛽.

48 Chapter 4. Table of Contents

https://doi.org/10.1063/1.464466

pyPRISM Documentation, Release v1.0.4

𝑟 Distance between sites.

𝐶ℎ𝑖𝑔ℎ High value used to approximate an infinite potential due to overlap

Description

This potential models the simiple hard-sphere fluid, in which sites have hard-core repulsion and no
interactions outside their contact distance.

Example

import pyPRISM

#Define a PRISM system and set the A-B interaction potential
sys = pyPRISM.System(['A','B'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)
sys.potential['A','B'] = pyPRISM.potential.HardSphere(sigma=1.0,high_value=10**6)

Warning: If sigma is specified such that it does not fall on the solution grid of the Domain object specified
in System, then the sigma will effectively be rounded. A warning should be emitted during the construction
of a PRISM object if this occurs.

__init__(sigma=None, high_value=1000000.0)
Constructor

Parameters

• sigma (float, optional) – Contact distance. If not specified, sigma will be calculated from
the diameters specified in the System object.

• high_value (float, optional) – High value used to approximate an infinite potential due
to overlap

calculate(r)
Calculate value of potential

r
Array of pair distances at which to calculate potential values

Type float np.ndarray

pyPRISM.potential.LennardJones module

class pyPRISM.potential.LennardJones.LennardJones(epsilon, sigma=None, rcut=None,
shift=False)

Bases: pyPRISM.potential.Potential.Potential

12-6 Lennard-Jones potential

Mathematical Definition

𝑈𝛼,𝛽(𝑟) = 4𝜖𝛼,𝛽

[︂(︁𝜎𝛼,𝛽

𝑟

)︁12.0
−
(︁𝜎𝛼,𝛽

𝑟

)︁6.0]︂
𝑈𝑠ℎ𝑖𝑓𝑡
𝛼,𝛽 (𝑟) = 𝑈𝛼,𝛽(𝑟) − 𝑈𝛼,𝛽(𝑟𝑐𝑢𝑡)

Variable Definitions

𝜖𝛼,𝛽 Strength of attraction between sites 𝛼 and 𝛽.

4.1. API 49

pyPRISM Documentation, Release v1.0.4

𝜎𝛼,𝛽 Length scale of interaction between sites 𝛼 and 𝛽.

𝑟 Distance between sites.

𝑟𝑐𝑢𝑡 Cutoff distance between sites.

Description

The classic 12-6 LJ potential. To facilitate direct comparison with molecular simulation, the sim-
ulation may be cut and shifted to zero at a specified cutoff distance by setting the rcut and shift
parameters. The full (non-truncated) LJ potential is accessed using 𝑟𝑐𝑢𝑡 = None and 𝑠ℎ𝑖𝑓𝑡 = False.

Example

import pyPRISM

#Define a PRISM system and set the A-B interaction potential
sys = pyPRISM.System(['A','B'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)
sys.potential['A','B'] = pyPRISM.potential.LennardJones(epsilon=1.0,sigma=1.0,
→˓rcut=2.5,shift=True)

Warning: If sigma is specified such that it does not fall on the solution grid of the Domain object specified
in System, then the sigma will effectively be rounded. A warning should be emitted during the construction
of a PRISM object if this occurs.

__init__(epsilon, sigma=None, rcut=None, shift=False)
Constructor

Parameters

• epsilon (float) – Depth of attractive well

• sigma (float, optional) – Contact distance. If not specified, sigma will be calculated from
the diameters specified in the System object.

• rcut (float, optional) – Cutoff distance for potential. Useful for comparing directly to
results from simulations where cutoffs are necessary.

• shift (bool,*optional*) – If 𝑟𝑐𝑢𝑡 is specified, shift the potential by its value at the
cutoff. If 𝑟𝑐𝑢𝑡 is not specified, this parameter is ignored.

calculate(r)
Calculate value of potential

r
Array of pair distances at which to calculate potential values

Type float np.ndarray

calculate_attractive(r)
Calculate the attractive tail of the Lennard Jones potential. Returns zero at 𝑟 < 𝜎

pyPRISM.potential.Potential module

class pyPRISM.potential.Potential.Potential
Bases: object

50 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

Baseclass for all intermolecular-pairwise potentials

..note:

Currently, this class doesn't do anything besides group all of the
potentials under a single inheritance heirarchy.

pyPRISM.potential.WeeksChandlerAndersen module

class pyPRISM.potential.WeeksChandlerAndersen.WeeksChandlerAndersen(epsilon,
sigma=None)

Bases: pyPRISM.potential.LennardJones.LennardJones

Purely repulsive Weeks-Chandler-Andersen potential

Mathematical Definition

𝑈𝛼,𝛽(𝑟) =

{︃
4𝜖𝛼,𝛽

[︁(︀𝜎𝛼,𝛽

𝑟

)︀12.0 − (︀𝜎𝛼,𝛽

𝑟

)︀6.0]︁
+ 𝜖𝛼,𝛽 𝑟 < 𝑟𝑐𝑢𝑡

0.0 𝑟 ≥ 𝑟𝑐𝑢𝑡

𝑟𝑐𝑢𝑡 = 21/6𝜎𝛼,𝛽

Variable Definitions

𝜖𝛼,𝛽 Strength of repulsion between sites 𝛼 and 𝛽.

𝜎𝛼,𝛽 Length scale of interaction between sites 𝛼 and 𝛽.

𝑟 Distance between sites.

𝑟𝑐𝑢𝑡 Cutoff distance where the value of the potential goes to zero.

Description

The Weeks-Chandler-Andersen potential for purely repulsive interactions. This potential is equiva-
lent to the Lennard-Jones potential cut and shifted at the minimum of the potential, which occurs at
𝑟 = 21/6𝜎.

Example

import pyPRISM

#Define a PRISM system and set the A-B interaction potential
sys = pyPRISM.System(['A','B'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)
sys.potential['A','B'] = pyPRISM.potential.WeeksChandlerAndersen(epsilon=1.0,
→˓sigma=1.0)

Warning: If sigma is specified such that it does not fall on the solution grid of the Domain object specified
in System, then the sigma will effectively be rounded. A warning should be emitted during the construction
of a PRISM object if this occurs.

__init__(epsilon, sigma=None)
Constructor

Parameters

4.1. API 51

pyPRISM Documentation, Release v1.0.4

• epsilon (float) – Repulsive strength modifier

• sigma (float, optional) – Contact distance. If not specified, sigma will be calculated from
the diameters specified in the System object.

calculate(r)
Calculate value of potential

r
Array of pair distances at which to calculate potential values

Type float np.ndarray

4.1.6 pyPRISM.trajectory package

PRISM is often used in conjunction with molecular simulation techniques, such as when using Self-Consistent PRISM.
This module is intended to provide classes for working with and analyzing molecular simulation trajectories.

See Self-Consistent PRISM Method for more information on the method.

pyPRISM.trajectory.Debyer module

class pyPRISM.trajectory.Debyer.Debyer(domain, nthreads=None)
Bases: object

Parallelized Debye method to calculate �̂�𝛼,𝛽(𝑘)

Warning: This pyPRISM functionality is still under testing. Use with caution.

Mathematical Definition

�̂�𝛼,𝛽(𝑘) = 𝛿𝛼,𝛽 +
𝐶𝛼,𝛽

𝑁𝑓𝑟𝑎𝑚𝑒

∑︁
𝑓

∑︁
𝑖,𝑗

sin(𝑘𝑟𝑓𝑖𝑗)

𝑘𝑟𝑓𝑖𝑗

Variable Definitions

• �̂�𝛼,𝛽(𝑘) Intra-molecular correlation function in Fourier-space

• 𝛿𝛼,𝛽 Kronecker delta for when considering a self (𝛼 == 𝛽) versus not-self (𝛼/ = 𝛽) site type pair.

• 𝑁𝑓𝑟𝑎𝑚𝑒 Number of frames in simulation trajectory

• 𝐶𝛼,𝛽 Scaling coefficient. If 𝛼 == 𝛽, then 𝐶𝛼,𝛽 = 1/𝑁𝛼 else 𝐶𝛼,𝛽 = 1/(𝑁𝛼 + 𝑁𝛽)

• 𝑟𝑓𝑖,𝑗 At frame 𝑓 of simulation, the scalar distance between sites with index i and j.

• 𝑘 Wavenumber of calculation.

Description

One of the most powerful uses of PRISM is to combine it with modern simulation techniques to calculate the
intra-molecular correlation functions �̂�(𝑘). This allows PRISM to be used for systems which do not have ana-
lytical descriptions for their �̂�(𝑘) and, furthermore, allows PRISM to predic the structure of non-ideal systems.

Unfortunately, this calculation is extremely computationally intensive and requires care to calculate correctly.
Here we provide a parallelized implementation of the Debye Method which can be used to calculate �̂�(𝑘) for
small to medium sized simulations.

This method works by allowing the user to selectively provide two sets of coordinate trajectories. To calculate
�̂�(𝑘) between site-types 𝛼 and 𝛽, the user should pass one trajectory of all sites of type 𝛼 and the other where

52 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

all sites are of type 𝛽. To calculate a self �̂�(𝑘) where 𝛼 == 𝛽 (selfOmega=*True*), both trajectories should be
the same. Note that selfOmega should be correctly set in either case.

The calculate method below takes six arguments: positions1, positions2, molecules1, molecules2, box, self-
Omega.

The positions1 and positions2 arguments are numpy array containing multiple frames of coordinates. Each
of the two arrays should only contain the coordinates of the site-type pair being considered. In other words,
positions1 should have a trajectory of positions for site type 𝛼 and positions2 for 𝛽 when calculating �̂�𝛼,𝛽(𝑘).
If 𝛼 == 𝛽, the positions1 and positions2 should be the same array.

The molecules1 and molecules2 arguments specify to which molecule each site belongs. These arrays are
necessary for calculations using trajectories that contain multiple molecules. For each site in the simulation of
a site-type, these lists have an integer index which specify which molecule the site belongs to. All sites which
share the same molecular index in this array belong to the same molecue. For single molecule simulations, an
array of zeros or ones can be specified.

See the example below for an example of this classes use.

Note: Note that the num_chunks argument does not set the number of threads used in the calculation. This is
governed by the OMP_NUM_THREADS (at least on *nix and OSX). If you have many cores on your machine,
you may actually see improved performance if you reduce the value of OMP_NUM_THREADS from its max-
imum. Setting this variable is also useful if you’re sharing a machine or node. If running a script, you can set
this variables globally:

$ export OMP_NUM_THREADS=4

or locally for a single execution

$ OMP_NUM_THREADS=4 python pyPRISM_script.py

Note: As currently written, this class assumes periodicity in all dimensions.

Example

Below we consider an arbitrary system that has at least two types of sites in it.

import pyPRISM
import numpy as np

load position, type, and molecule information using a users method of
choice. For the array sizes, F = number of frames from simulation, N =
total number of atoms/beads/sites
positions = ... # 3D Array of size (F,N,3)
types = ... # 1D Array of size (N)
molecules = ... # 1D Array of size (N)
box = ... # 2D Array of size (F,3)

create pyPRISM domain
domain = pyPRISM.Domain(dr = 0.25, length = 1024)

create Debyer object
debyer = pyPRISM.trajectory.Debyer(domain=domain,nthreads=4)

(continues on next page)

4.1. API 53

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

calculate omega_1_1
mask1 = (types == 1)
positions1 = positions[:,mask1,:]
molecules1 = molecules[mask1]
mask2 = (types == 1)
positions2 = positions[:,mask2,:]
molecules2 = molecules[mask2]
selfOmega = True
omega_1_1 = debyer.calculate(positions1, positions2, molecules1, molecules2, box,
→˓ selfOmega)

calculate omega_1_2
mask1 = (types == 1)
positions1 = positions[:,mask1,:]
molecules1 = molecules[mask1]
mask2 = (types == 2)
positions2 = positions[:,mask2,:]
molecules2 = molecules[mask2]
selfOmega = False
omega_1_2 = debyer.calculate(positions1, positions2, molecules1, molecules2, box,
→˓ selfOmega)

calculate(self, positions1, positions2, molecules1, molecules2, box, selfOmega)
Calculate omega from two site type trajectories

Warning: The first five arguments of this method (positions1, positions2, molecules1, molecules2,
box) must be numpy arrays (not Python lists) for this method to work.

Parameters

• positions1 (np.ndarray, float, size (𝐹,𝑁𝛼,3)) – 3-D numpy array containing coordi-
nate trajectory from a simulation for site type 𝛼. See above for description.

• positions2 (np.ndarray, float, size (𝐹,𝑁𝛽 ,3)) – 3-D numpy array containing coordi-
nate trajectory from a simulation for site type 𝛽. See above for description.

• molecules1 (np.ndarray, float, size (𝑁𝛼)) – 1-D numpy arrays which specify the molec-
ular identity of a site for sites of type 𝛼. See above for a description.

• molecules2 (np.ndarray, float, size (𝑁𝛽)) – 1-D numpy arrays which specify the molec-
ular identity of a site for sites of type 𝛽. See above for a description.

• box (np.ndarray, float, size(3)) – 1-D array of box dimensions, 𝑙𝑥, 𝑙𝑦, 𝑙𝑧

• selfOmega (bool) – Set to True if 𝛼 == 𝛽 and False otherwise.

Returns omega – Intra-molecular correlation function

Return type np.ndarray

4.1.7 pyPRISM.util package

54 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

pyPRISM.util.UnitConverter module

class pyPRISM.util.UnitConverter.UnitConverter(dc=1.0, dc_unit=’nanometer’,
mc=14.02, mc_unit=’gram/mole’,
ec=2.48, ec_unit=’kilojoule/mole’)

Bases: object

Unit conversion utility

Description

pyPRISM operates in a system of reduced units commonly called ‘Lennard Jones units’. In this
unit system, all measures are reported relative to characteristic values: length = 𝑑𝑐, mass = 𝑚𝑐, and
energy = 𝑒𝑐. This class is designed to make some common conversions between reduced and real
units easier.

See the Theory.General notebook of the Tutorial for a more detailed discussion of these units and
how to work with the UnitConverter utility.

Note: The methods prefixed with “to” all expect floating point values in reduced units and convert to real units.

Warning: This class uses the Pint package. While the rest of pyPRISM will function without Pint, this
class will not be available without this dependency installed in the current environment.

Example

import pyPRISM

domain = pyPRISM.Domain(length=4096,dr=0.25)

create unit converter utility
uc = pyPRISM.util.UnitConverter(dc=1.5,dc_unit='nm')

convert wavenumber from LJ units to real units
using built-in conversion
real_k = uc.toInvAngstrom(domain.k)
real_k_magnitudes = real_k.magnitude

convert radius in real units to reduced units
manually using pint
real_radius = 123.5 # angstrom
reduced_radius = real_radius * uc('angstrom').to('dc').magnitude

__call__(unit_string)
Convenience method for accessing the pint UnitRegistry

__init__(dc=1.0, dc_unit=’nanometer’, mc=14.02, mc_unit=’gram/mole’, ec=2.48,
ec_unit=’kilojoule/mole’)

Constructor

Parameters

• dc,dc_unit (float,str) – Magnitude and unit of characteristic distance

• mc,mc_unit (float,str) – Magnitude and unit of characteristic mass

4.1. API 55

https://pint.readthedocs.io

pyPRISM Documentation, Release v1.0.4

• ec,ec_unit (float,str) – Magnitude and unit of characteristic energy

d,dc
The defined characteristic distance as a defined Pint Quantity.

Type Pint Quantity

m,mc
The defined characteristic mass as a defined Pint Quantity.

Type Pint Quantity

e,ec
The defined characteristic energy as a defined Pint Quantity.

Type Pint Quantity

toCelcius(temperature)
Convert thermal energy to temperature units in Celcius

Parameters temperature (float or np.ndarray of floats) – Value of thermal
energy (𝑘𝐵𝑇) to be converted

Returns temperature – temperature in Kelvin as a Pint Quantity. Use the magnitude attribute
(temperature.magnitude) to obtain the numerical value of the temperature as a floating point
value.

Return type Pint Quantity

toConcentration(density)
Convert reduced number density to real concentration units

Parameters density (float, or np.ndarray of floats) – Value(s) of density to
be converted

Returns concentration – density in 𝑚𝑜𝑙/𝐿 as a Pint Quantity. Use the magnitude attribute
(concentration.magnitude) to obtain the numerical value of the contration as a floating point
value.

Return type Pint Quantity

toInvAngstrom(wavenumber)
Convert wavenumbers to real units

Parameters wavenumber (float, or np.ndarray of floats) – Value(s) of
wavenumbers to be converted

Returns wavenumber – wavenumbers in 𝐴𝐴−1 as a Pint Quantity. Use the magnitude attribute
(wavenumber.magnitude) to obtain the numerical value of the wavenumber as a floating point
value.

Return type Pint Quantity

toInvNanometer(wavenumber)
Convert wavenumbers to real units

Parameters wavenumber (float, or np.ndarray of floats) – Value(s) of
wavenumbers to be converted

Returns wavenumber – wavenumbers in 𝑛𝑚−1 as a Pint Quantity. Use the magnitude attribute
(wavenumber.magnitude) to obtain the numerical value of the wavenumber as a floating point
value.

Return type Pint Quantity

toKelvin(temperature)
Convert thermal energy to temperature units in 𝐾

56 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

Parameters temperature (float or np.ndarray of floats) – Value of thermal
energy (𝑘𝐵𝑇) to be converted

Returns temperature – temperature in 𝐾 as a Pint Quantity. Use the magnitude attribute (tem-
perature.magnitude) to obtain the numerical value of the temperature as a floating point value.

Return type Pint Quantity

toVolumeFraction(density, diameter)
Convert reduced number density to volume fraction

Parameters

• density (float, or np.ndarray of floats) – Value(s) of density to be con-
verted

• diameter (float) – diameter of the site associated with the density

Returns vol_fraction – unitless volume as a Pint Quantity. Use the magnitude attribute
(vol_fraction.magnitude) to obtain the numerical value of the volume fraction as a floating
point value.

Return type Pint Quantity

4.2 Installation Instructions

4.2.1 Quick Command-Line Install

Install pyPRISM with all basic dependences via conda or pip from the command line. These commands should be
platform agnostic and work for Linux, macOS, and Windows if you have Anaconda or pip installed.

$ conda install -c conda-forge pyPRISM

or

$ pip install pyPRISM

4.2.2 Manual Command-Line Install

If the quick-install commands do not work, then you can install pyPRISM “manually”. After downloading the reposi-
tory from GitHub, follow the steps below.

Note: Unless specified explicitly, the commands below should work for Linux, macOS, and Windows.

Note: For windows users, please ensure you are using the Anaconda command prompt. This can be found by opening
the Start menu and searching for Anaconda.

Step 1: Dependencies via Anaconda

The easiest way to get an environment set up is by using the env/py2.yml or env/py3.yml we have provided
for a python2 or python3 based environment. We recommend the python3 version. If you don’t already have it, install

4.2. Installation Instructions 57

https://www.anaconda.com/download/
https://pypi.python.org/pypi/pip
https://github.com/usnistgov/pyprism/

pyPRISM Documentation, Release v1.0.4

conda. Note that all of the below instructions can be executed via the anaconda-navigator GUI. To start, we’ll make
sure you have the latest version of conda.

> conda deactivate

> conda update anaconda

Now create the pyPRISM_py3 environment by executing the following. Note that these commands assume your
terminal is located in the base directory of the pyPRISM repository (i.e., the directory with “setup.py”):

> conda env create -f env/py3.yml

When installation is complete you must activate the environment.

(Windows) > activate pyPRISM_py3

(macOS/Linux) $ source activate pyPRISM_py3

Later, when you are ready to exit the environment, you can type:

(Windows) > deactivate

(macOS/Linux) $ source deactivate

If for some reason you want to remove the environment entirely, you can do so by writing:

> conda env remove --name pyPRISM_py3

Note that an environment which satisfies the above dependencies must be active every time you wish to use pyPRISM
via script or notebook. If you open a new terminal, you will have to reactivate the conda environment before running
a script or starting jupyter notebook.

See Dependencies for more information.

Step 2: Install pyPRISM

After the depdendencies are satisfied and/or the conda environment is created and activated, pyPRISM can be installed
to the system by running:

$ cd <pyPRISM base directory>

$ python setup.py install

4.2.3 Non-Install

There are use-cases where it makes sense to not permanently install pyPRISM onto a workstation or computing cluster.
All methods below assume that you have already satisfied the dependencies described in Dependencies

Method 1: Command-Line Level

You can add pyPRISM to your current terminal environment so that all scripts and notebook servers run in this evi-
ronment will be able to access pyPRISM.

58 Chapter 4. Table of Contents

https://www.continuum.io/downloads

pyPRISM Documentation, Release v1.0.4

(macOS/Linux) $ export PYTHONPATH=${PYTHONPATH}:/path/to/pyPRISM/dir

(Windows) > set PATH=%PATH%;C:\path\to\pyPRISM\dir

Note: The path in the above examples should be to the directory containing pyPRISM. The specified directory should
be the one containing setup.py in the repository you downloaded or cloned from GitHub and not the one containing
__init__.py.

Warning: This method is entirely non-permanent and must be repeated for each new terminal or Jupyter instance
that is opened.

Method 2: Script or Notebook-Level

Alternatively, you can add pyPRISM to each script or notebook at runtime by placing the following code at the top of
your script or notebook.

>>> import sys
>>> sys.insert(0,'/path/to/pyPRISM/directory/')

Note: The path in the above examples should be to the directory containing pyPRISM. The specified directory should
be the one containing setup.py in the repository you downloaded or cloned from GitHub and not the one containing
__init__.py.

Warning: This method is entirely non-permanent and must be repeated for each new script that is run.

4.2.4 Dependencies

The following are the tested dependencies needed to use pyPRISM:

• Python 2.7 or 3.5

• Numpy >= 1.8.0

• Scipy

These dependencies are required for optional features

• Cython (simulation trajectory analyses)

• Pint (unit conversion utility)

These additional dependencies are needed to run the tutorials

• Jupyter

• matplotlib

• Bokeh

• HoloViews

4.2. Installation Instructions 59

http://python.org
http://numpy.org
http://scipy.org/
http://cython.org
https://pint.readthedocs.io/en/latest/
http://jupyter.org/
http://matplotlib.org/
http://bokeh.pydata.org/
http://holoviews.org/

pyPRISM Documentation, Release v1.0.4

These additional dependencies are needed to compile the documentation from source

• Sphinx

• sphinx-autobuild

• sphinx_rtd_theme

• nbsphinx

• Pandoc <= 1.19.2

All of these dependecies can be satisfied by creating a conda environment using the .yml files in source distribution.
Note that we provide multiple environments for different use-cases (e.g., Python 2 vs. Python 3, basic user vs. devel-
oper). The environments can be created using the following command from root directory of the repository. The root
directory is the directory with the file setup.py in it.

$ conda env create -f env/py3.yml

Alternatively, all dependecies can be installed in your current Anaconda environment using

$ conda install -c conda-forge numpy scipy cython pint jupyter matplotlib bokeh
→˓holoviews

Alternatively, all dependencies can be installed via pip

$ pip install numpy scipy cython pint jupyter matplotlib bokeh holoviews

Alternatively, each package can be downloaded and installed manually.

4.2.5 Usage

Before pyPRISM can be used two primary setup tasks must occur

• All dependencies must be satistifed. See Dependencies.

• pyPRISM must be placed on your PYTHONPATH either manually or via installation

Once these tasks are satisfied, pyPRISM can be imported and used in scripts or notebooks. The tutorial notebooks are
in the tutorial directory in the codebase repository.

$ cd <pyPRISM tutorial directory>

$ jupyter notebook

This should spawn a jupyter notebook tab in your web browser of choice. If the tab doesn’t spawn, check the terminal
for a link that can be copied and pasted. See Tutorial for more information on the tutorial.

4.2.6 Verifying an Install

In order to verify your installation and to help ensure that bugs haven’t been introduced, it is useful to run the test suite
that is packaged in pyPRISM. If everything is installed correctly, the test suite should run and successfully complete
all tests. Note that you must have all dependencies satisfied (e.g. via Ananconda) along with pyPRISM before running
the test suite.

$ cd <pyPRISM base directory>/pyPRISM/test

$ python -m pytest --verbose

60 Chapter 4. Table of Contents

http://sphinx-doc.org
https://pypi.python.org/pypi/sphinx-autobuild
https://pypi.python.org/pypi/sphinx_rtd_theme
https://nbsphinx.readthedocs.io
https://pandoc.org
https://github.com/usnistgov/pyprism
https://github.com/usnistgov/pyprism/

pyPRISM Documentation, Release v1.0.4

If the above command throws an error about “No module named pytest”, then you must install the pytest package.
This can be done via Anaconda or pip .

$ conda install pytest

or

$ pip install pytest

4.2.7 Documentation

To build the documentation you’ll need to satisfy the extra dependencies described in Dependencies. Once these are
satisfied, you can build the documentation with

$ cd <pyPRISM base directory>/docs

$ make clean

$ make html

4.2.8 Troubleshooting

1. ModuleNotFoundError or ImportError

This means that your current distribution of python cannot find the pyPRISM package. If you run the
command below in a terminal, the pyPRISM package must be found in one of the listed directories.

python -c "from __future__ import print_function; import sys;print(sys.
→˓path)"

If pyPRISM is not listed, there are several reasons why this might have occurred:

• You are not using the same version of python that you installed pyPRISM to. This occurs often
when using anaconda because there is often a “system” python and an “anaconda” python.

• You have not activated the conda environment to which you installed pyPRISM

See Non-Install for details on how to manually add pyPRISM into your environment (assuming that
the other installation methods are failing).

2. Bash Terminal vs. Windows Terminal vs. Python Terminal vs. IPython Terminal

There are strong differences between these terminals and what you can do with them. You can
identify which environment you are in by looking at the terminal itself:

(Bash) $
(Windows) >
(Python) >>>
(IPython) In [1]:

The Bash and Windows terminals should be used for installing python packages, managing en-
vironments, and running python scripts (e.g. $ python run.py). The Python and IPython
terminals are for interactively running and working with Python code and each line of an example
can be copied and run in these terminals. In general, the IPython terminal is a superior tool to the
standard Python one and offers features such as syntax highlighting and code completion.

3. Other Internal Error

4.2. Installation Instructions 61

https://www.anaconda.com/download/
https://pypi.python.org/pypi/pip

pyPRISM Documentation, Release v1.0.4

Please file a bug report on GitHub. Please see Contributing for instructions on how to do this.

Warning: While the developers aim to provide compatibility across operating systems and use cases, they expect
installation to be a primary barrier for many users. After reading through this documentation, please file an issue
on GitHub if you run into problems.

4.3 Quickstart Guide

4.3.1 Setup

Requirements

• pyPRISM

• matplotlib

See Quick Command-Line Install or the full install instructions to get pyPRISM and set up your environment. Note
that you’ll need matplotlib for this example as well. After the environment is set up, the example below can be copied
into a file (e.g. test.py) and run from the command line via

$ python test.py

Alternatively, the below code can be copied into your IDE (Spyder, PyCharm) or notebook provider (Jupyter) of
choice.

4.3.2 Features Used

• pyPRISM.core.System

• pyPRISM.core.Domain

• pyPRISM.core.Density

• pyPRISM.core.PRISM

• pyPRISM.omega.FreelyJointedChain

• pyPRISM.omega.InterMolecular

• pyPRISM.potential.HardSphere

• pyPRISM.potential.Exponential

• pyPRISM.closure.PercusYevick

• pyPRISM.closure.HyperNettedChain

• pyPRISM.calculate.pair_correlation

4.3.3 Annotated Example

import pyPRISM
import matplotlib.pyplot as plt

The system holds all information needed to set up a PRISM problem. We

(continues on next page)

62 Chapter 4. Table of Contents

https://github.com/usnistgov/pyprism/
https://matplotlib.org

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

instantiate the system by specifying the site types and thermal energy
level (kT, coarse-grained temperature) of the system.
sys = pyPRISM.System(['particle','polymer'],kT=1.0)

We must discretize Real and Fourier space
sys.domain = pyPRISM.Domain(dr=0.01,length=4096)

The composition of the system is desribed via number densities
sys.density['polymer'] = 0.75
sys.density['particle'] = 6e-6

The diameter of each site is specified (in reduced units)
sys.diameter['polymer'] = 1.0
sys.diameter['particle'] = 5.0

The molecular structure is described via intra-molecular correlation
functions (i.e. omegas)
sys.omega['polymer','polymer'] = pyPRISM.omega.FreelyJointedChain(length=100,l=4.0/
→˓3.0)
sys.omega['polymer','particle'] = pyPRISM.omega.NoIntra()
sys.omega['particle','particle'] = pyPRISM.omega.SingleSite()

The site-site interactions are specified via classes which are lazily
evaluated during the PRISM-object creation
sys.potential['polymer','polymer'] = pyPRISM.potential.HardSphere(sigma=1.0)
sys.potential['polymer','particle'] = pyPRISM.potential.Exponential(sigma=3.0,
→˓alpha=0.5,epsilon=1.0)
sys.potential['particle','particle'] = pyPRISM.potential.HardSphere(sigma=5.0)

Closure approximations are also specified via classes
sys.closure['polymer','polymer'] = pyPRISM.closure.PercusYevick()
sys.closure['polymer','particle'] = pyPRISM.closure.PercusYevick()
sys.closure['particle','particle'] = pyPRISM.closure.HyperNettedChain()

Calling the .solve() method of the system object attempts to numerically
solv the PRISM equation and, if successful, it returns a PRISM object
containing all of the solved correlation functions.
PRISM = sys.solve()

Calculate the pair-correlation functions.
rdf = pyPRISM.calculate.pair_correlation(PRISM)

Plot the results using matplotlib
plt.plot(sys.domain.r,rdf['polymer','polymer'],color='gold',lw=1.25,ls='-')
plt.plot(sys.domain.r,rdf['polymer','particle'],color='red',lw=1.25,ls='--')
plt.plot(sys.domain.r,rdf['particle','particle'],color='blue',lw=1.25,ls=':')
plt.ylabel('pair correlation')
plt.xlabel('separation distance')
plt.show()

4.3.4 Discussion

The above example sets up a PRISM object, runs a PRISM calculation, and plots the real-space pair correlation
functions for a system of freely-jointed polymer chains of length 𝑁 = 100 mixed with spherical hard nanoparticles of

4.3. Quickstart Guide 63

pyPRISM Documentation, Release v1.0.4

diameter 𝐷 = 5𝑑 (i.e., 5 times the monomer site diameter, 𝑑).

In addition to the heterogeneity in size scales, this example also demonstrates pyPRISM’s ability to handle hetero-
geneous interaction potentials; in this system the hard sphere potential describes pairwise interactions for all species,
excepting particle-polymer interactions which are modeled via an exponential attraction.

All necessary inputs are specified (site types and system temperature, domain size and discretization, site densities and
diameters, intra-molecular correlation functions, interaction potentials, and closures used for each pair of site types)
and then the PRISM calculation is performed. See Reference [1] for a full discussion of this system.

4.3.5 More Examples

A detailed tutorial with examples on how to build and run PRISM calculations for a variety of systems is shown in the
Tutorial. The tutorial includes a general introduction to Python, PRISM, and the pyPRISM package. It also contains
annotated example scripts that were used to create all of the case-studies in Reference [2].

4.3.6 References

1. Hooper, J.B.; Schweizer, K.S.; Contact Aggregation, Bridging, and Steric Stabilization in Dense Polymer Parti-
cle Mixtures, Macromolecules 2005, 38, 8858-8869 [link]

2. Martin, T.B.; Gartner, T.E. III; Jones, R.L.; Snyder, C.R.; Jayaraman, A.; pyPRISM: A Computational Tool
for Liquid State Theory Calculations of Macromolecular Materials, Macromolecules, 2018, 51 (8), p2906-2922
[link]

4.4 Tutorial

A companion tutorial to the documentation can be found in the source of the pyPRISM package. This tutorial can
be used interactively in live Jupyter notebooks or rendered as a static document. The benefit of using a live Jupyter
notebook is that users are able to edit and run real pyPRISM code while the static website provides a rapid, and setup-
free way to survey the codebase. On top of teaching users how to use pyPRISM, the tutorial covers the basics of
Jupyter notebooks, Python, and PRISM theory.The tutorial also goes over several case studies from the literature and
illustrates how pyPRISM can be used to reproduce results from these studies.

4.4.1 Interactive Tutorial

• Jupyter Notebooks [link]

– The tutorial notebooks are packaged in the main codebase repository under the tutorial directory. See
Usage for more details on how to use these notebooks.

• Binder

– Try out the pyPRISM tutorial without installing!

Warning: Binder is a free service that we are taking advantage of to give users a zero-effort chance
to try pyPRISM. Users should only run the tutorial examples and not custom notebooks. Please do
not abuse this resource. Once a user has decided to use pyPRISM for research or teaching, please
download and install pyPRISM locally as described in the Installation Instructions.

64 Chapter 4. Table of Contents

https://doi.org/10.1021/ma060577m
https://dx.doi.org/10.1021/acs.macromol.8b00011
https://github.com/usnistgov/pyprism/
https://mybinder.org/v2/gh/usnistgov/pyprism/master?filepath=tutorial

pyPRISM Documentation, Release v1.0.4

4.4.2 Non-Interactive Tutorial

Welcome to the pyPRISM Tutorial!

The Polymer Reference Interaction Site Model (PRISM) theory describes the equilibrium spatial-correlations of
liquid-like polymer systems. The goal of this tutorial is to educate users on both the basics of PRISM theory and the
pyPRISM tool.

What systems can be studied with PRISM?

• Polymer melts/blends

– olefinic and non-olefinic polymers

– linear/branched/dendritic/sidechain polymers

• Copolymer melts/blends

• Polymer solutions

• Nanoparticle solutions

• Polymer nanocomposites

• Liquid crystals (with anistropic formalism)

• Micelle Solutions

• Polyelectrolytes

– rod-like polymers

– flexible polymers

• Ionomers

• Ionic liquids

What thermodynamic and structural quantities can PRISM calculate?

• Second virial coefficients, 𝐵2

• Flory effective interaction parameters, 𝜒𝑒𝑓𝑓

• Potentials of mean force

• Pair correlation functions (i.e. radial distribution functions)

• Partial structure factors

• Spinodal transition temperatures

• Equations of state

• Isothermal compressibilities

4.4. Tutorial 65

pyPRISM Documentation, Release v1.0.4

What are the benefits of using PRISM over other simulation or theory methods?

• is orders of magnitude faster

– typically takes seconds to minutes to solve equations

• does not have finite size effects

• does not need to be equilibrated

• is mostly free of incompressibility assumptions

For what systems is PRISM theory not applicable for?

• macrophase-separated systems

• non-isotropic phases

• systems with strong nematic ordering (without anistropic formalism)

• calculating dynamic properties (e.g., diffusion coefficients, rheological properties)

Citations

If you use pyPRISM in your work, we ask that you please cite both of the following articles

• Martin, T.B.; Gartner, T.E III; Jones, R.L.; Snyder, C.R.; Jayaraman, A.; pyPRISM: A Computational Tool for
Liquid State Theory Calculations of Macromolecular Materials, Macromolecules, 2018, 51 (8), p2906-2922
doi: https://dx.doi.org/10.1021/acs.macromol.8b00011

• Schweizer, K.S.; Curro, J.G.; INTEGRAL EQUATION THEORY OF THE STRUCTURE OF POLYMER
MELTS, Physical Review Letters, 1987, 58 (3) p246-249 doi: http://dx.doi.org/10.1103/PhysRevLett.58.246

Setup

Detailed instructions for installation and usage of pyPRISM can be found in the documentation on ReadTheDocs.io.

Tutorial Tracks

In order to cater to users at multiple levels and capabilities, we have created different tracks for users to follow. The
image below describes our recommendations for users with different backgrounds and intentions. Of course, these are
only recommendations and users should feel free to study whichever documents they wish to. Note that some of the
notebooks are still under construction and we intend to continue to grow and extend this tutorial.

NB0.Introduction · NB1.PythonBasics · NB2.Theory.General · NB3.Theory.PRISM · NB4.pyPRISM.Overview
· NB5.CaseStudies.PolymerMelts · NB6.CaseStudies.Nanocomposites · NB7.CaseStudies.Copolymers ·
NB8.pyPRISM.Internals · NB9.pyPRISM.Advanced

66 Chapter 4. Table of Contents

https://dx.doi.org/10.1021/acs.macromol.8b00011
http://dx.doi.org/10.1103/PhysRevLett.58.246
http://pyprism.readthedocs.io/en/latest/install/install.html

pyPRISM Documentation, Release v1.0.4

Legal

Disclaimer

Any identification of commercial or open-source software in these notebooks is done so purely in order to specify the
methodology adequately. Such identification is not intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that the softwares identified are necessarily the best
available for the purpose.

License

This software was developed by employees of the National Institute of Standards and Technology (NIST), an agency
of the Federal Government and is being made available as a public service. Pursuant to title 17 United States Code
Section 105, works of NIST employees are not subject to copyright protection in the United States. This software
may be subject to foreign copyright. Permission in the United States and in foreign countries, to the extent that NIST
may hold copyright, to use, copy, modify, create derivative works, and distribute this software and its documentation
without fee is hereby granted on a non-exclusive basis, provided that this notice and disclaimer of warranty appears in
all copies.

THE SOFTWARE IS PROVIDED ‘AS IS’ WITHOUT ANY WARRANTY OF ANY KIND, EITHER EXPRESSED,
IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY THAT THE SOFTWARE
WILL CONFORM TO SPECIFICATIONS, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, AND FREEDOM FROM INFRINGEMENT, AND ANY WARRANTY THAT
THE DOCUMENTATION WILL CONFORM TO THE SOFTWARE, OR ANY WARRANTY THAT THE SOFT-
WARE WILL BE ERROR FREE. IN NO EVENT SHALL NIST BE LIABLE FOR ANY DAMAGES, INCLUD-
ING, BUT NOT LIMITED TO, DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING
OUT OF, RESULTING FROM, OR IN ANY WAY CONNECTED WITH THIS SOFTWARE, WHETHER OR NOT
BASED UPON WARRANTY, CONTRACT, TORT, OR OTHERWISE, WHETHER OR NOT INJURY WAS SUS-
TAINED BY PERSONS OR PROPERTY OR OTHERWISE, AND WHETHER OR NOT LOSS WAS SUSTAINED
FROM, OR AROSE OUT OF THE RESULTS OF, OR USE OF, THE SOFTWARE OR SERVICES PROVIDED
HEREUNDER.

Python Basics

To start, we recognize that many potential users are newcomers to Python and Jupyter so we begin with a simple
notebook that focuses on how to use these tools. Please skip this notebook if you are familiar with Python and
Jupyter. Note that there are many tutorials on Python and its various libraries so we only provide a most cursory look
here. Refer to the links below for more detailed tutorials.

Python Tutorials

• http://swcarpentry.github.io/python-novice-inflammation/

• http://docs.python-guide.org/en/latest/intro/learning/

• https://docs.python.org/3/tutorial/

Numpy Tutorials

• https://www.dataquest.io/blog/numpy-tutorial-python/

4.4. Tutorial 67

http://swcarpentry.github.io/python-novice-inflammation/
http://docs.python-guide.org/en/latest/intro/learning/
https://docs.python.org/3/tutorial/
https://www.dataquest.io/blog/numpy-tutorial-python/

pyPRISM Documentation, Release v1.0.4

• https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

Jupyter Tutorials

• https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook

• https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/

Matplotlib Tutorials

• https://matplotlib.org/2.0.2/users/pyplot_tutorial.html

Holoviews Tutorial

• http://holoviews.org/Tutorials/

Concepts in this Notebook

• Jupyter Notebook + Python Basics

• What is an “object” or “class” in Python?

• Vectorized Calculations in Numpy

• Plotting

Notebook Setup

To begin, please run Kernel-> Restart & Clear Output from the menu at the top of the notebook. It is a
good idea to run this before starting any notebook so that the notebook is fresh for the user.

Now, let’s do some basic Python sanity checking to make sure we can import neccessary libraries. Run the cell
below. Click the cell to activate it and then use the Run button in the toolbar above. Alternatively, the cell can be run
by pressing <Shift-Enter>. That is, hold Shift and then press Enter while holding Shift. The purpose of
this cell is to load in external functions and libraries.

If successful, you should see a set of logos appear below the cell. Which logos appear depend on what is inside the
hv.extension() command at the bottom of the cell. If no logos appear and the cell throws an error, there is likely
something wrong with your environment.

Troubleshooting:

• Did you activate the correct conda environment before starting the jupyter notebook?

• If not using anaconda, did you install all dependencies before starting the jupyter notebook?

• Is pyPRISM installed in your current environment on your PYTHONPATH?

Holoviews + Bokeh Logos:

68 Chapter 4. Table of Contents

https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
https://www.datacamp.com/community/tutorials/tutorial-jupyter-notebook
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/
https://matplotlib.org/2.0.2/users/pyplot_tutorial.html
http://holoviews.org/Tutorials/

pyPRISM Documentation, Release v1.0.4

[1]: import pyPRISM
import numpy as np
import matplotlib.pyplot as plt
import holoviews as hv

hv.extension('bokeh')

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_load.v0+json

<IPython.core.display.HTML object>

All Variables are Global in Jupyter

Variables in Jupyter notebooks live globally “between” cells. The first time you run the cell below, it will throw an
error because the ‘b’ variable is commented out. If you run the following cell, and then rerurn the cell below, you’ll see
the cell runs fine. This is an important concept to remember when using Jupyter notebooks because variables defined
at the bottom of the notebook can affect the cells at the top.

Tip:

When all else fails, use the Kernel -> Restart functionality from the top-level menu. This will clear all variables
from memory.

[4]: a = 1
print('Value of a =',a)

#b = 2
print('Value of b =',b)

Value of a = 1
Value of b = 3

[3]: b = 3
print('Value of b =',b)

Value of b = 3

What is an “object” or “class” in Python?

pyPRISM uses an object-oriented design to hold data and carry out the PRISM calculations. While a full description
of what “object-oriented” means is far outside the scope of this tutorial, we’ll try to introduce the most basic features
of the methodology.

A class in Python describes a data structure for holding functions and variables. Below we describe a simple class
for defining a shape.

[5]: class Square:
def __init__(self,length,width):

self.length = length
self.width = width

def area(self):
return self.length*self.width

4.4. Tutorial 69

pyPRISM Documentation, Release v1.0.4

But how do we use this class? We create an object from the class. The __init__ function actually describes how
the object is initially created. We can create many objects from the same class with different input parameters.

[6]: square_object1 = Square(length=10,width=2.5)
print('square_object1 = ',square_object1)

square_object2 = Square(length=5,width=4)
print('square_object2 = ',square_object2)

square_object1 = <__main__.Square object at 0x7f4cf467b2e8>
square_object2 = <__main__.Square object at 0x7f4cf4628c18>

We access the variables, which are called attributes in Python, in these objects using the ‘dot’ operator. These are
defined via the self variable shown in the __init__ function above.

[7]: print('square_object1 (length by width) =',square_object1.length,'by',square_object1.
→˓width)
print('square_object2 (length by width) =',square_object2.length,'by',square_object2.
→˓width)

square_object1 (length by width) = 10 by 2.5
square_object2 (length by width) = 5 by 4

Functions (called methods in Python) are also accessed via the ‘dot’ operation, but now we have to call the function
using the paren.

[8]: print('square_object1 area =',square_object1.area())
print('square_object2 area =',square_object2.area())

square_object1 area = 25.0
square_object2 area = 20

Using Efficient Vectorized Operations in Numpy

The NumPy library is one of the most ubiquitous libraries used in Python-driven data science. Numpy provides
a number of functions and data structures that allow us to generate and manipulate data in a simple and efficient
interface.

To start we generate two Numpy arrays that we will plot later.

[9]: x = np.arange(100)
print('x =',x)

print('')

y = np.random.random(100)
print('y =',y)

x = [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
96 97 98 99]

y = [0.96871466 0.13760296 0.92705958 0.24109572 0.50563029 0.80134237
0.59722568 0.21639133 0.37703911 0.43609433 0.02655977 0.71988708
0.70907182 0.12334527 0.73284856 0.95141623 0.71099059 0.03064434
0.76687427 0.92077048 0.84735594 0.23879096 0.27032655 0.42357319

(continues on next page)

70 Chapter 4. Table of Contents

https://numpy.org

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

0.11700788 0.80653507 0.46032536 0.05262332 0.232715 0.63107869
0.75308625 0.99781775 0.47262713 0.0691762 0.9136122 0.8119291
0.78867143 0.74982783 0.94198547 0.20783126 0.04089624 0.88651836
0.64336257 0.84467139 0.59211992 0.5142557 0.17448646 0.76043449
0.40729017 0.10215748 0.15373949 0.44002134 0.60214855 0.38047772
0.29815424 0.80502636 0.12819524 0.97573272 0.7035504 0.21003149
0.38919393 0.64316055 0.68222711 0.4787152 0.42001444 0.94344592
0.02804441 0.50508219 0.47422093 0.65023172 0.30454903 0.20138134
0.38643276 0.09272204 0.93451919 0.81901792 0.96167536 0.8331298
0.25388386 0.52126561 0.01819315 0.73659048 0.93054841 0.8445565
0.76504531 0.83054956 0.43768718 0.6461208 0.2125739 0.98487238
0.02612495 0.77296086 0.25881863 0.68742048 0.94622851 0.51406883
0.48448949 0.99641145 0.12647969 0.02502326]

Accessing the elements of an array in Numpy is achieved via the square braces x[i]. Note that Python array indices
always start at 0. The last element in the array can be accessed via the i=-1 index.

[10]: print('x[0] =',x[0])
print('y[0] =',y[0])

print('x[10] =',x[10])
print('y[10] =',y[10])

print('x[-1] =',x[-1])
print('y[-1] =',y[-1])

x[0] = 0
y[0] = 0.9687146645976468
x[10] = 10
y[10] = 0.026559771669054655
x[-1] = 99
y[-1] = 0.025023261763978955

One of the primary features of Numpy is that it allows us to use vectorized operations. These are operations that
are applied to the entire array ‘at once’ rather than having to manually apply to each member of the array. The two
approaches are compared below in which we try to increment all of the values in the y array by one. We point out that
the second approach is not possible in pure Python.

[11]: # slow iteration
new_y1 = np.copy(y)
for i in range(100):

new_y1[i] = y[i] + 1.0

#fast vectorized operation
new_y2 = y + 1.0

print('y1 =',new_y1)
print('y2 =',new_y2)

y1 = [1.96871466 1.13760296 1.92705958 1.24109572 1.50563029 1.80134237
1.59722568 1.21639133 1.37703911 1.43609433 1.02655977 1.71988708
1.70907182 1.12334527 1.73284856 1.95141623 1.71099059 1.03064434
1.76687427 1.92077048 1.84735594 1.23879096 1.27032655 1.42357319
1.11700788 1.80653507 1.46032536 1.05262332 1.232715 1.63107869
1.75308625 1.99781775 1.47262713 1.0691762 1.9136122 1.8119291
1.78867143 1.74982783 1.94198547 1.20783126 1.04089624 1.88651836
1.64336257 1.84467139 1.59211992 1.5142557 1.17448646 1.76043449

(continues on next page)

4.4. Tutorial 71

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

1.40729017 1.10215748 1.15373949 1.44002134 1.60214855 1.38047772
1.29815424 1.80502636 1.12819524 1.97573272 1.7035504 1.21003149
1.38919393 1.64316055 1.68222711 1.4787152 1.42001444 1.94344592
1.02804441 1.50508219 1.47422093 1.65023172 1.30454903 1.20138134
1.38643276 1.09272204 1.93451919 1.81901792 1.96167536 1.8331298
1.25388386 1.52126561 1.01819315 1.73659048 1.93054841 1.8445565
1.76504531 1.83054956 1.43768718 1.6461208 1.2125739 1.98487238
1.02612495 1.77296086 1.25881863 1.68742048 1.94622851 1.51406883
1.48448949 1.99641145 1.12647969 1.02502326]

y2 = [1.96871466 1.13760296 1.92705958 1.24109572 1.50563029 1.80134237
1.59722568 1.21639133 1.37703911 1.43609433 1.02655977 1.71988708
1.70907182 1.12334527 1.73284856 1.95141623 1.71099059 1.03064434
1.76687427 1.92077048 1.84735594 1.23879096 1.27032655 1.42357319
1.11700788 1.80653507 1.46032536 1.05262332 1.232715 1.63107869
1.75308625 1.99781775 1.47262713 1.0691762 1.9136122 1.8119291
1.78867143 1.74982783 1.94198547 1.20783126 1.04089624 1.88651836
1.64336257 1.84467139 1.59211992 1.5142557 1.17448646 1.76043449
1.40729017 1.10215748 1.15373949 1.44002134 1.60214855 1.38047772
1.29815424 1.80502636 1.12819524 1.97573272 1.7035504 1.21003149
1.38919393 1.64316055 1.68222711 1.4787152 1.42001444 1.94344592
1.02804441 1.50508219 1.47422093 1.65023172 1.30454903 1.20138134
1.38643276 1.09272204 1.93451919 1.81901792 1.96167536 1.8331298
1.25388386 1.52126561 1.01819315 1.73659048 1.93054841 1.8445565
1.76504531 1.83054956 1.43768718 1.6461208 1.2125739 1.98487238
1.02612495 1.77296086 1.25881863 1.68742048 1.94622851 1.51406883
1.48448949 1.99641145 1.12647969 1.02502326]

Plotting

One of the most common plotting libraries in Python is Matplotlib. Below is a simple demostration of how we
can plot our x and y arrays that we created above. The syntax here should be familiar to those who have experience
with Matlab. (Note that the plot below will not appear in the static version of this tutorial.)

[12]: plt.plot(x,y,'r')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

72 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

tutorial/../_build/doctrees/nbsphinx/tutorial_NB1.PythonBasics_23_0.png

A powerful wrapper library that works with Matplotlib and other plotting back ends is Holoviews. When
the hv.extension command at the top of the notebook is invoked with ‘matplotlib’, the plots produced by
Holoviews will be static. When ‘bokeh’ is used, the backend will be the Bokeh library which will allow us to
create live, interactive charts in the notebook. The downside to the Bokeh backend is that the plots do not show up
when these notebooks are viewed on Github or when the notebooks are saved as html. We’ll use the the Matplotlib
backend by default so that the notebooks can be previewed on Github, but we encourage users to switch to the Bokeh
backend if working with the notebooks directly.

[13]: %opts Curve [width=600,height=400]
hv.Curve((x,y))

[13]: :Curve [x] (y)

Summary

Hopefully this notebook serves to give a brief glance into how Python, Jupyter, and some associated libraries work.
As was stated at the top of the notebook, this is not intended to be comprehensive, but rather just a broad introduction
for the purposes of orienting those new to Python and/or Jupyter.

NB0.Introduction · NB1.PythonBasics · NB2.Theory.General · NB3.Theory.PRISM · NB4.pyPRISM.Overview
· NB5.CaseStudies.PolymerMelts · NB6.CaseStudies.Nanocomposites · NB7.CaseStudies.Copolymers ·
NB8.pyPRISM.Internals · NB9.pyPRISM.Advanced

[]:

General Theory Concepts

Before we start digging into the details of PRISM and our implementation, it is worth highlighting a few general
theoretical topics. For those with a simulation or theory background, this notebook can probably be skipped.

4.4. Tutorial 73

pyPRISM Documentation, Release v1.0.4

Concepts

• Reduced Units

Notebook Setup

To begin, please run Kernel-> Restart & Clear Output from the menu at the top of the notebook. It is a
good idea to run this before starting any notebook so that the notebook is fresh for the user. Next, run the cell below
(via the top menu-bar or <Shift-Enter>. If the cell throws an import error, there is likely something wrong with
your environment.

Troubleshooting:

• Did you activate the correct conda environment before starting the jupyter notebook?

• If not using anaconda, did you install all dependencies before starting the jupyter notebook?

• Is pyPRISM installed in your current environment on your PYTHONPATH?

[1]: import pyPRISM
import numpy as np

Reduced Units

pyPRISM operates in a system of reduced units commonly called ‘Lennard Jones units’. In this unit system, all mea-
sures are reported relative to characteristic values: - characteristic length = 𝑑𝑐 - characteristic mass = 𝑚𝑐 - characteristic
energy = 𝑒𝑐

While pyPRISM does not need to know the characteristic values to carry out calculations, users will need to give all
input parameters in terms of these values. Note that the choice of characteristic values should not affect the results if all
parameters are correctly scaled. The values are mostly arbitrary, but they should be chosen such that they correspond to
values taken from the real system under study. For example, for mixture of nanoparticles with diameters - 𝑑1 = 2.0 𝑛𝑚
- 𝑑2 = 10.0 𝑛𝑚

a user might want to set - 𝑑𝑐 = 2 𝑛𝑚

so that the diameters can be reported to pyPRISM as - 𝑑*1 = 1 𝑑𝑐 - 𝑑*2 = 5 𝑑𝑐.

Note that the star ,*, indicates a reduced variable while the subscript 𝑐 indicates a characteristic unit.

The characteristic energy is often chosen to be representative of an important energy scale in the system under study.
For example, one could choose the size of thermal fluctuations (𝑘𝐵𝑇) at a given temperature. To convert from
reduced temperature reported in units of thermal energy, 𝑇 *, one must use the relation
- 𝑇 * = 𝑘𝐵𝑇

𝑒𝑐

It can be tedious for those outside of the simulation and theory fields to work in these unit systems. pyPRISM has a
UnitConverter class that is designed to allow for easy translation between common reduced and real unit systems.
The UnitConverter class is built on top of the Pint library.

In the example below we choose a set of characteristic units, and create a unit converter object.

74 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

[2]: uconv = pyPRISM.util.UnitConverter(dc=1.0, dc_unit='nanometer',
mc=14.02, mc_unit='gram/mole',
ec=2.48, ec_unit='kilojoule/mole')

print(uconv)

<UnitConverter dc:1e-09 meter | mc:0.01402 kilogram / mole | ec:2480.0 kilogram *
→˓meter ** 2 / mole / second ** 2>

Next, we can use several built in methods to convert common reduced units to real units. Note that these functions
return a Quantity object rather than a number. To obtain the number as a floating point value, use the magnitude
attribute as shown below

[3]: # convert thermal energy to temperature
Tstar = 1.25
T = uconv.toKelvin(Tstar)

print("Reduced Temperature (ec)")
print(Tstar)

print("Temperature (ec)")
print(T)
print(T.magnitude)

print()

print('T is of type',type(T))
print('T.magnitude is of type',type(T.magnitude))

Reduced Temperature (ec)
1.25
Temperature (ec)
372.8443218289683 kelvin
372.8443218289683

T is of type <class 'pint.quantity.build_quantity_class.<locals>.Quantity'>
T.magnitude is of type <class 'float'>

The UnitConverter class also has a built in conversion for reduced wavenumber in order to make comparison to
experimental scattering measurements easier.

[4]: #convert reduced wavenumbers to inverse angstroms or inverse nanometers
kstar = np.logspace(start=-2,stop=0,num=10) #reduced wavenumber values
k = uconv.toInvAngstrom(kstar)

print("Reduced Wavenumber (dc^-1)")
print(kstar)
print()

print("Wavenumber (A^-1)")
print(k)

Reduced Wavenumber (dc^-1)
[0.01 0.01668101 0.02782559 0.04641589 0.07742637 0.12915497
0.21544347 0.35938137 0.59948425 1.]

Wavenumber (A^-1)
[0.001 0.0016681 0.00278256 0.00464159 0.00774264 0.0129155 0.02154435 0.
→˓03593814 0.05994843 0.1] / angstrom

4.4. Tutorial 75

pyPRISM Documentation, Release v1.0.4

Alternatively, users can work directly with the Pint library. In the UnitConverter class, we have defined reduced unit
Quantities that can be used for more “manual” unit conversion.

[5]: Tstar = 1.25*uconv.ec # uconv.ec is the reduced "unit"
print('Tstar =', Tstar)

T = Tstar/uconv.pint.boltzmann_constant/uconv.pint.avogadro_number
print('T =',T)
print('T =',T.to('kelvin'))

Tstar = 1.25 echar
T = 1.25 echar / avogadro_number / boltzmann_constant
T = 372.8443218289683 kelvin

Summary

The goal of this notebook is to demystify some general theory topics for the reader. As we are continuously developing
this tutorial, users should feel free to send us suggestions for future topics to go over in this or other notebooks.

NB0.Introduction · NB1.PythonBasics · NB2.Theory.General · NB3.Theory.PRISM · NB4.pyPRISM.Overview
· NB5.CaseStudies.PolymerMelts · NB6.CaseStudies.Nanocomposites · NB7.CaseStudies.Copolymers ·
NB8.pyPRISM.Internals · NB9.pyPRISM.Advanced

PRISM Theory

In this introductory notebook, we will cover a number of concepts from both a theoretical and technical standpoint.
The primary goal is to orient you so that you have a basic understanding of Python and the Jupyter environment and
the basics of PRISM theory.

Concepts

• PRISM Equation

• Total Correlation Function

• Intra-molecular Correlation Function

• Direct Correlation Function

The PRISM Equation

PRISM theory describes the spatial correlations between spherical sites which represent either an atomic species or
some collection of atoms in the molecule (e.g. a monomer or statistical segment of a polymer chain). By carrying out
calculations with multiple site types, one can represent homopolymers with chemically complex monomers, polymer
blends, copolymers, nanocomposites, and colloidal solutions. All information about the chemistry and connectively
of these systems is encoded into the pair-interactions and intra-molecular correlation functions as will be discussed
below.

76 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

In general, for a material system that can be represented with 𝑛 types of sites, the PRISM equation is written in Fourier
space as

�̂�(𝑘) = Ω̂(𝑘)𝐶(𝑘)[Ω̂(𝑘) + �̂�(𝑘)]

with �̂�(𝑘), Ω̂(𝑘), and 𝐶(𝑘) as 𝑛 × 𝑛 matrices of correlation values at wavenumber k. Note that the overhat notation
and the functional designation (𝑘) indicate that these variables are functions in Fourier-Space. The above equation
greatly benefits from the Fourier Convolution Theorem as it is a complicated integral equation in Real-space.

The meaning of each of these variables is briefly discussed below for a three component system with site-types A, B,
and C.

Total Correlation Function, �̂�(𝑘)

�̂�(𝑘) =

⎡⎣𝜌𝑝𝑎𝑖𝑟𝐴𝐴 ℎ̂𝐴𝐴(𝑘) 𝜌𝑝𝑎𝑖𝑟𝐴𝐵 ℎ̂𝐴𝐵(𝑘) 𝜌𝑝𝑎𝑖𝑟𝐴𝐶 ℎ̂𝐴𝐶(𝑘)

𝜌𝑝𝑎𝑖𝑟𝐵𝐴 ℎ̂𝐵𝐴(𝑘) 𝜌𝑝𝑎𝑖𝑟𝐵𝐵 ℎ̂𝐵𝐵(𝑘) 𝜌𝑝𝑎𝑖𝑟𝐵𝐶 ℎ̂𝐵𝐶(𝑘)

𝜌𝑝𝑎𝑖𝑟𝐶𝐴 ℎ̂𝐶𝐴(𝑘) 𝜌𝑝𝑎𝑖𝑟𝐶𝐵 ℎ̂𝐶𝐵(𝑘) 𝜌𝑝𝑎𝑖𝑟𝐶𝐶 ℎ̂𝐶𝐶(𝑘)

⎤⎦
in which 𝜌𝑝𝑎𝑖𝑟𝛼𝛽 = 𝜌𝛼𝜌𝛽 and 𝜌𝛼, 𝜌𝛽 correspond to the site number densities of site types 𝛼 and 𝛽 respectively. In
Real-space, ℎ𝛼𝛽(𝑟) corresponds to the pair correlation function (a.k.a radial distribution function) as

ℎ𝛼𝛽(𝑟) = 𝑔𝛼𝛽(𝑟) − 1

in which 𝑟 is the separation distance between sites of type 𝛼 and 𝛽. Note that all spatial correlations matrices are, by
definition, symmetric with site-type pairs, i.e. ℎ𝛼𝛽(𝑟) = ℎ𝛽,𝛼(𝑟).

�̂�(𝑘) is found as a result of a numerical PRISM calculation.

Intra-molecular Correlation Function, Ω̂(𝑘)

Ω̂(𝑘) =

⎡⎣𝜌𝑠𝑖𝑡𝑒𝐴𝐴 �̂�𝐴𝐴(𝑘) 𝜌𝑠𝑖𝑡𝑒𝐴𝐵 �̂�𝐴𝐵(𝑘) 𝜌𝑠𝑖𝑡𝑒𝐴𝐶 �̂�𝐴𝐶(𝑘)
𝜌𝑠𝑖𝑡𝑒𝐵𝐴 �̂�𝐵𝐴(𝑘) 𝜌𝑠𝑖𝑡𝑒𝐵𝐵 �̂�𝐵𝐵(𝑘) 𝜌𝑠𝑖𝑡𝑒𝐵𝐶 �̂�𝐵𝐶(𝑘)
𝜌𝑠𝑖𝑡𝑒𝐶𝐴 �̂�𝐶𝐴(𝑘) 𝜌𝑠𝑖𝑡𝑒𝐶𝐵 �̂�𝐶𝐵(𝑘) 𝜌𝑠𝑖𝑡𝑒𝐶𝐶 �̂�𝐶𝐶(𝑘)

⎤⎦
in which 𝜌𝑠𝑖𝑡𝑒𝛼𝛽 = 𝜌𝛼 + 𝜌𝛽 if 𝛼 ̸= 𝛽 and 𝜌𝑠𝑖𝑡𝑒𝛼𝛽 = 𝜌𝛼 otherwise. In brief, Ω̂(𝑘) specifies the connectivity and structure
of the molecules in a system. In contrast to �̂�(𝑘) which only specifies the inter-molecular correlations between
molecules, Ω̂(𝑘) only describes the correlations within molecules. Each �̂�(𝑘) is analagous to a form-factor from
PRISM theory.

Ω̂(𝑘) is an input to numerical PRISM calculations.

Direct Correlation Function, 𝐶(𝑘)

𝐶(𝑘) =

⎡⎣𝑐𝐴𝐴(𝑘) 𝑐𝐴𝐵(𝑘) 𝑐𝐴𝐶(𝑘)
𝑐𝐵𝐴(𝑘) 𝑐𝐵𝐵(𝑘) 𝑐𝐵𝐶(𝑘)
𝑐𝐶𝐴(𝑘) 𝑐𝐶𝐵(𝑘) 𝑐𝐶𝐶(𝑘)

⎤⎦
𝐶(𝑘) describes the inter-molecular correlations between sites when many-molecule effects (beyond pair) are removed.

𝐶(𝑘) is found as a result of a numerical PRISM calculation.

4.4. Tutorial 77

pyPRISM Documentation, Release v1.0.4

Summary

The goal of this notebook is not to comprehensively cover the details of PRISM theory, but rather to give the user the
broad strokes of the formalism. Hopefully, the details in this notebook will clarify some of the calculations that users
will carry out later.

NB0.Introduction · NB1.PythonBasics · NB2.Theory.General · NB3.Theory.PRISM · NB4.pyPRISM.Overview
· NB5.CaseStudies.PolymerMelts · NB6.CaseStudies.Nanocomposites · NB7.CaseStudies.Copolymers ·
NB8.pyPRISM.Internals · NB9.pyPRISM.Advanced

pyPRISM Basics

In this notebook, we’ll go though the various pieces of pyPRISM and how we go about setting up a “problem” in the
pyPRISM environment. We start with a classic physical system: a hard-sphere fluid.

Concepts

• pyPRISM basics

• posing problems in pyPRISM

Notebook Setup

To begin, please run Kernel-> Restart & Clear Output from the menu at the top of the notebook. It is a
good idea to run this before starting any notebook so that the notebook is fresh for the user. Next, run the cell below
(via the top menu-bar or <Shift-Enter>. If the cell throws an import error, there is likely something wrong with
your environment.

If successful, you should see a set of logos appear below the cell. Which logos appear depend on what is inside the
hv.extension() command at the bottom of the cell. If no logos appear and the cell throws an error, there is likely
something wrong with your environment.

Troubleshooting:

• Did you activate the correct conda environment before starting the jupyter notebook?

• If not using anaconda, did you install all dependencies before starting the jupyter notebook?

• Is pyPRISM installed in your current environment on your PYTHONPATH?

Holoviews + Bokeh Logos:

[1]: import pyPRISM
import numpy as np
import matplotlib.pyplot as plt
import holoviews as hv

hv.extension('bokeh')

78 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_load.v0+json

<IPython.core.display.HTML object>

Create System

To start, we define a “System” object which will contain all of the information that will specify the structure and
interactions (chemistry) of a given system. In this case, our goal is to set up the calculation for a simple, hard-sphere
monomer solution. We define the system to have 1 site-type called “monomer” and we define the reduced temperature
to be 𝑘𝐵𝑇 = 1.0.

[2]: sys = pyPRISM.System(['monomer'],kT=1.0)

Define Domain

Next, we need to define the numerical solution domain. In other words, we must define the Real- and Fourier- space
grid that we will solve the equations on. We do this by specifying the grid spacing in Real-space (dr) and the number
of points in the grid (length). Specifying these values fixes both the Real- and Fourier- space grid, and we could have
alternatively specified the Fourier-space grid spacing (dk). Note that it is best for efficiency if the length is a power of
2.

[3]: sys.domain = pyPRISM.Domain(dr=0.005,length=32768)
print('r =',sys.domain.r)
print('k = ',sys.domain.k)

r = [5.00000e-03 1.00000e-02 1.50000e-02 ... 1.63830e+02 1.63835e+02
1.63840e+02]

k = [1.91747598e-02 3.83495197e-02 5.75242795e-02 ... 6.28280181e+02
6.28299356e+02 6.28318531e+02]

Define Interactions

Now we’ll define the interactions of the monomer solution. This effectively represents the chemistry of the system by
defining how the sites attract or repel one another. For this example, we’ll be examining a simple, hard-sphere fluid.

[4]: sys.diameter['monomer'] = 1.0
sys.potential['monomer','monomer'] = pyPRISM.potential.HardSphere()

Define Composition

The composition of a system in PRISM theory is defined via site number densities. Since this is a one component
system, we only need to specify one density.

[5]: sys.density['monomer'] = 0.8
sys.density

[5]: <Density total:0.80>

4.4. Tutorial 79

pyPRISM Documentation, Release v1.0.4

Define Molecular Structure

In general, the molecular structure is specified via �̂�(𝑘) in PRISM calculations. These functions are essentially form-
factors which describe the intra-molecular correlations within a molecule. It is through these functions that the molecu-
lar structure of a system is described and arbitrarily complicated �̂�(𝑘) are possible. In this case of a simple hard-sphere
fluid, �̂�(𝑘) = 1 for all 𝑘 by definition.

[6]: sys.omega['monomer','monomer'] = pyPRISM.omega.SingleSite()

Define Closure Approximation

In order to solve the PRISM equations numerically, an extra closure-approximation must be provided for each pair
of sites. A detailed explanation of various closures is slightly beyond the scope of this introductory tutorial. A few
guidelines are provided below

• The PercusYevick (PY) closure is a good starting point for most systems with divergent (hard-core, Weeks-
Chandler-Andersen, Lennard-Jones) interactions.

• The HypernettedChain (HNC) closure is more accurate than PY for pairs of sites that have very different diam-
eters. This is very useful knowledge when studying composite systems.

[7]: sys.closure['monomer','monomer'] = pyPRISM.closure.PercusYevick()

Create PRISM Object and Solve

Finally, we take the System object and use it to spawn a PRISM object. We have created the “System” and “PRISM”
classes because they have separate, specific roles. The System class defines the structure and interactions of a given
system while the PRISM class contains the machinery for setting up, solving, and storing the results of the mathemat-
ical PRISM formalism. After solve() is called, the result of the calculation is stored in the PRISM object.

[8]: PRISM = sys.createPRISM()
PRISM.solve()

0: |F(x)| = 2.62378; step 1; tol 0.266006
1: |F(x)| = 1.7493; step 1; tol 0.400055
2: |F(x)| = 0.639398; step 1; tol 0.144039
3: |F(x)| = 0.171479; step 1; tol 0.0647323
4: |F(x)| = 0.00617309; step 1; tol 0.00116634
5: |F(x)| = 3.63074e-06; step 1; tol 3.11335e-07

[8]: fun: array([4.15803093e-09, 1.25704004e-08, 2.08222783e-08, ...,
2.85459257e-11, -2.23242033e-11, 4.31762904e-12])

message: 'A solution was found at the specified tolerance.'
nit: 7

status: 1
success: True

x: array([7.31923234e-02, 2.18136517e-01, 3.61390574e-01, ...,
-2.84237873e-11, 2.22021204e-11, -4.19551144e-12])

Plotting the Results

To start, we’ll plot the pair correlation function of this system. We calculate this value by passing the solved PRISM
object to a calculation function.

80 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

[9]: %opts Curve Scatter Area [width=500,height=400]
%opts Scatter (size=10,alpha=0.5)

x = sys.domain.r
y = pyPRISM.calculate.pair_correlation(PRISM)['monomer','monomer']
rdf1 = hv.Curve((x,y),extents=(0,0,6,4),label='BaseRDF').redim.label(x='r',y='g(r)')
rdf1

[9]: :Curve [x] (y)

We could instead calculate the structure factor of this system

[10]: %opts Curve Scatter Area [width=500,height=400]
%opts Scatter (size=10,alpha=0.5)

x = sys.domain.k
y = pyPRISM.calculate.structure_factor(PRISM)['monomer','monomer']
hv.Curve((x,y),extents=(0,0,20,None)).redim.label(x='k',y='S(k)')

[10]: :Curve [x] (y)

Or maybe the second virial coefficient

[11]: B2 = pyPRISM.calculate.second_virial(PRISM)['monomer','monomer']
print('The monomer-monomer second-virial coefficient for this system is',B2)

The monomer-monomer second-virial coefficient for this system is 0.604288942117634

Putting It All Together

The above steps were long and detailed, but it’s important to realize that we only executed a few lines of code, shown
below. Try changing the density, closures, and interactions and see how these changes affect the pair-correlation
function. A few suggestions are below:

• change the closure to

– sys.closure[‘monomer’,’monomer’] = pyPRISM.closure.HypernettedChain()

– sys.closure[‘monomer’,’monomer’] = pyPRISM.closure.MSA(apply_hard_core=True)

• change the site diameter

– diameter = 0.75

• change the density

– density = 0.6

[12]: %opts Curve Scatter Area [width=500,height=400]
%opts Scatter (size=10,alpha=0.5)

sys = pyPRISM.System(['monomer'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.005,length=32768)
sys.diameter['monomer'] = 1.0
sys.potential['monomer','monomer'] = pyPRISM.potential.HardSphere()
sys.density['monomer'] = 0.9
sys.omega['monomer','monomer'] = pyPRISM.omega.SingleSite()
sys.closure['monomer','monomer'] = pyPRISM.closure.HyperNettedChain(apply_hard_
→˓core=True)

(continues on next page)

4.4. Tutorial 81

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

PRISM = sys.createPRISM()
PRISM.solve()

x = sys.domain.r
y = pyPRISM.calculate.pair_correlation(PRISM)['monomer','monomer']
rdf2 = hv.Curve((x,y),extents=(0,0,6,6),label='ModifiedRDF').redim.label(x='r',y='g(r)
→˓')

hv.Overlay([rdf1,rdf2])

0: |F(x)| = 3.97246; step 0.23001; tol 0.561713
1: |F(x)| = 3.06534; step 0.382596; tol 0.535897
2: |F(x)| = 2.67269; step 0.145932; tol 0.684197
3: |F(x)| = 2.41102; step 0.121401; tol 0.732398
4: |F(x)| = 2.13474; step 0.21196; tol 0.705555
5: |F(x)| = 1.7113; step 0.409184; tol 0.578369
6: |F(x)| = 1.41496; step 0.239333; tol 0.615285
7: |F(x)| = 1.15999; step 0.232213; tol 0.604872
8: |F(x)| = 0.902274; step 0.332558; tol 0.544518
9: |F(x)| = 0.646089; step 0.496285; tol 0.461477
10: |F(x)| = 0.371822; step 1; tol 0.298076
11: |F(x)| = 0.042139; step 1; tol 0.0115596
12: |F(x)| = 0.000206088; step 1; tol 2.15269e-05
13: |F(x)| = 2.27462e-08; step 1; tol 1.09636e-08

[12]: :Overlay
.Curve.BaseRDF :Curve [x] (y)
.Curve.ModifiedRDF :Curve [x] (y)

Getting Extra Help

Besides going to the documentation website (see Github page) or compiling the documentation yourself, Jupyter
provides a few ways to access the documentation in the notebook. Try running the cell below.

[13]: pyPRISM.potential.WeeksChandlerAndersen?

Alternatively, if you are inside the parenthesis of a function call, typing <Shift-Tab> will bring up a small,floating
documentation popup. Try this below:

[14]: pyPRISM.potential.WeeksChandlerAndersen(epsilon=1.0,sigma=1.0)

[14]: <Potential: WeeksChandlerAndersen>

Summary

In this notebook, we stepped through the process of constructing a PRISM calculation in pyPRISM for a standard
system in liquid state theory: the hard sphere fluid. We went over each step of the pyPRISM calculation in detail
and then calculated several thermodynamic and structural quantities from the converged equations. In the following
notebooks, we will move on to covering several real word systems and attempt to reproduce published data from
scientific literature.

NB0.Introduction · NB1.PythonBasics · NB2.Theory.General · NB3.Theory.PRISM · NB4.pyPRISM.Overview
· NB5.CaseStudies.PolymerMelts · NB6.CaseStudies.Nanocomposites · NB7.CaseStudies.Copolymers ·
NB8.pyPRISM.Internals · NB9.pyPRISM.Advanced

82 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

Case Studies: Polymer Melts

In this example, we use pyPRISM to study and understand two simple but important systems: A dense, linear ho-
mopolymer melt of varying density and a ring homopolymer melt of varying molecular mass. In the linear melt system,
we take advantage of the fact that PRISM theory doesn’t have a simulation ‘box’ and study very long (N=16,000) gaus-
sian polymer chains. Note that studing chains of this length using Molecular Dynamics or Monte Carlo techniques
would be difficult if not impossible. In the ring melt system, we leverage PRISM’s speed to quickly span a parameter
space in molecular mass that would be challenging/time consuming to replicate synthetically.

Concepts

• 1 component PRISM

• Phase space “hopping”

• Gaussian chains

Tools

• pyPRISM.calculate.structure_factor

• pyPRISM.calculate.pair_correlation

References

1. Curro, J.G.; Schweizer K.S.; Integral Equation Theory of Homopolymer Melts, Molecular Crystals and Liquid
Crystals Incorporating Nonlinear Optics, 1990, 180:1, 77-89, doi: 10.1080/00268949008025790

2. Curro, J.G.; Schweizer K.S.; Theory of Polymer Melts: An Integral Equation Approach, Macromolecules, 1987,
20, 1928-1934, doi: 10.1021/ma00174a040

Notebook Setup

To begin, please run Kernel-> Restart & Clear Output from the menu at the top of the notebook. It is a
good idea to run this before starting any notebook so that the notebook is fresh for the user. Next, run the cell below
(via the top menu-bar or <Shift-Enter>. If the cell throws an import error, there is likely something wrong with
your environment.

If successful, you should see a set of logos appear below the cell. Which logos appear depend on what is inside the
hv.extension() command at the bottom of the cell. If no logos appear and the cell throws an error, there is likely
something wrong with your environment.

Troubleshooting:

• Did you activate the correct conda environment before starting the jupyter notebook?

• If not using anaconda, did you install all dependencies before starting the jupyter notebook?

• Is pyPRISM installed in your current environment on your PYTHONPATH?

4.4. Tutorial 83

pyPRISM Documentation, Release v1.0.4

Holoviews + Bokeh Logos:

[1]: import pyPRISM
import numpy as np
import holoviews as hv
hv.extension('bokeh')

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_load.v0+json

<IPython.core.display.HTML object>

Linear Homopolymer Melt: Comparison to Hard Sphere Fluid

First, we solve the hard-sphere fluid (HSF) system from the previous notebook. Note that while variables are “global”
within a Jupyter notebook, separate notebooks do not share variables so we have to re-do this calculation here.

[2]: sys = pyPRISM.System(['A'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.005,length=32768)
sys.diameter['A'] = 1.0
sys.potential['A','A'] = pyPRISM.potential.HardSphere()
sys.density['A'] = 0.8
sys.omega['A','A'] = pyPRISM.omega.SingleSite()
sys.closure['A','A'] = pyPRISM.closure.PY(apply_hard_core=True)
PRISM_HSF = sys.createPRISM()
PRISM_HSF.solve()

x_HSF = sys.domain.r
y_HSF = pyPRISM.calculate.pair_correlation(PRISM_HSF)['A','A']

print('Done!')

0: |F(x)| = 2.62378; step 1; tol 0.266006
1: |F(x)| = 1.7493; step 1; tol 0.400055
2: |F(x)| = 0.639398; step 1; tol 0.144039
3: |F(x)| = 0.171479; step 1; tol 0.0647323
4: |F(x)| = 0.00617309; step 1; tol 0.00116634
5: |F(x)| = 3.63074e-06; step 1; tol 3.11335e-07
Done!

Then, we move onto the polmer melt case. Note that the only difference is the intra-molecular structure function
(�̂�(𝑘)).

[3]: sys.omega['A','A'] = pyPRISM.omega.Gaussian(length=16000,sigma=sys.diameter.sigma['A',
→˓'A'])
PRISM_Melt = sys.createPRISM()
PRISM_Melt.solve()

x_Melt = sys.domain.r
y_Melt = pyPRISM.calculate.pair_correlation(PRISM_Melt)['A','A']

print('Done!')

84 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

0: |F(x)| = 49.5243; step 0.339595; tol 0.387728
1: |F(x)| = 1.78198; step 1; tol 0.135299
2: |F(x)| = 0.179788; step 1; tol 0.0091614
3: |F(x)| = 0.00469113; step 1; tol 0.000612737
4: |F(x)| = 1.06398e-06; step 1; tol 4.62974e-08
Done!

[4]: %%opts Overlay [width=500,height=400,legend_position='top_right']

HSF = hv.Curve((x_HSF,y_HSF),label='Hard-Sphere Fluid',extents=(0,0,25,None))
Melt = hv.Curve((x_Melt,y_Melt),label='Gaussian Melt',extents=(0,0,25,None))

hv.Overlay([HSF,Melt])

[4]: :Overlay
.Curve.Hard_hyphen_minus_Sphere_Fluid :Curve [x] (y)
.Curve.Gaussian_Melt :Curve [x] (y)

Now, let’s explore the effect of �̂�(𝑘) on the pair correlation function. Insert the following �̂�(𝑘) into the cell below.

Note that the length is purposefully changed for the last two :math:‘omega‘.
- sys.omega[‘A’,’A’] = pyPRISM.omega.GaussianRing(length=16000,sigma=diameter) -
sys.omega[‘A’,’A’] = pyPRISM.omega.FreelyJointedChain(length=16000,l=diameter) -
sys.omega[‘A’,’A’] = pyPRISM.omega.NFJC(length=50,l=diameter) - sys.omega[‘A’,’A’] =
pyPRISM.omega.DiscreteKoyama(sigma=1.0,l=diameter,length=50,lp=4/3)

[5]: %%opts Overlay [width=500,height=400,legend_position='top_right']

Change setting below

sys.omega['A','A'] = pyPRISM.omega.GaussianRing(length=16000,sigma=sys.diameter['A','A
→˓'])

PRISM_Melt = sys.createPRISM()
PRISM_Melt.solve()

x_Melt2 = sys.domain.r
y_Melt2 = pyPRISM.calculate.pair_correlation(PRISM_Melt)['A','A']

Melt2 = hv.Curve((x_Melt2,y_Melt2),label='Melt',extents=(0,0,25,None))
hv.Overlay([HSF,Melt,Melt2])

0: |F(x)| = 74.9546; step 0.207941; tol 0.564017
1: |F(x)| = 66.9276; step 0.108737; tol 0.717558
2: |F(x)| = 66.6832; step 0.00446985; tol 0.893439
3: |F(x)| = 66.5865; step 0.00180916; tol 0.89739
4: |F(x)| = 65.8112; step 0.0146023; tol 0.879164
5: |F(x)| = 60.6825; step 0.0998973; tol 0.765192
6: |F(x)| = 60.5201; step 0.0361758; tol 0.895188
7: |F(x)| = 60.3859; step 0.0353109; tol 0.896015
8: |F(x)| = 60.2734; step 0.0340261; tol 0.896649
9: |F(x)| = 60.2609; step 0.00431724; tol 0.899626
10: |F(x)| = 60.2069; step 0.00769838; tol 0.898388
11: |F(x)| = 60.1458; step 0.0222937; tol 0.898174
12: |F(x)| = 60.1201; step 0.0100317; tol 0.899231
13: |F(x)| = 60.0508; step 0.0274146; tol 0.897928
14: |F(x)| = 59.9013; step 0.03615; tol 0.895523

(continues on next page)

4.4. Tutorial 85

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

15: |F(x)| = 59.8455; step 0.0269553; tol 0.898326
16: |F(x)| = 59.7906; step 0.0278476; tol 0.898347
17: |F(x)| = 59.6937; step 0.0311638; tol 0.897087
18: |F(x)| = 59.6934; step 0.000105054; tol 0.899989
19: |F(x)| = 59.5362; step 0.0359007; tol 0.895266
20: |F(x)| = 59.5225; step 0.00873502; tol 0.899586
21: |F(x)| = 59.4992; step 0.0149687; tol 0.899296
22: |F(x)| = 59.4764; step 0.0148359; tol 0.899311
23: |F(x)| = 59.4029; step 0.0288751; tol 0.897776
24: |F(x)| = 59.3802; step 0.0151269; tol 0.899313
25: |F(x)| = 55.5415; step 1; tol 0.787398
26: |F(x)| = 55.4249; step 1; tol 0.896224
27: |F(x)| = 55.4169; step 1; tol 0.899741
28: |F(x)| = 55.4167; step 1; tol 0.899995
29: |F(x)| = 55.4167; step 1; tol 0.9
30: |F(x)| = 55.4167; step 1; tol 0.9
31: |F(x)| = 6.64034; step 1; tol 0.729
32: |F(x)| = 6.11109; step 1; tol 0.762252
33: |F(x)| = 3.97474; step 1; tol 0.522925
34: |F(x)| = 1.54704; step 1; tol 0.246105
35: |F(x)| = 0.0512046; step 1; tol 0.000985955
36: |F(x)| = 0.000268186; step 1; tol 2.46887e-05
37: |F(x)| = 1.11475e-08; step 1; tol 1.55498e-09

[5]: :Overlay
.Curve.Hard_hyphen_minus_Sphere_Fluid :Curve [x] (y)
.Curve.Gaussian_Melt :Curve [x] (y)
.Curve.Melt :Curve [x] (y)

Linear Homopolymer Melt: Comparison to Literature

Now that we’ve solved a simple, homopolymer system, let’s compare to data from the literature. This will also give
us a chance to demonstrate some detailed scripting that we can do with typyPRISM.

First, we’ll load in the data extracted from the literature [Ref. 1] that we’ll be comparing against.

[6]: gr_compare = []
sk_compare = []
for density in [0.6,0.8,1.0]:

fname = '../data/LinearMelt-Gr-rho{}.csv'.format(density)
x,y = np.loadtxt(fname,delimiter=',').T
gr_compare.append([density,x,y])

fname = '../data/LinearMelt-Sk-rho{}.csv'.format(density)
x,y = np.loadtxt(fname,delimiter=',').T
sk_compare.append([density,x,y])

Next, we define a bunch of variables to define how our plots will look later in this section.

[7]: %opts Curve Scatter [width=500,height=400] Layout [shared_axes=False] Scatter
→˓(size=10,alpha=0.5)
%opts Curve Scatter [fontsize={'xlabel':14,'legend':14,'ylabel':14,'ticks':14}]
%opts Overlay [legend_position='bottom_left']
%opts Layout [shared_axes=False]

(continues on next page)

86 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

colors = {} # empty dictionary
colors[1.0] = 'blue'
colors[0.8] = 'red'
colors[0.6] = 'green'

ls = {} # empty dictionary
ls[1.0] = 'solid'
ls[0.8] = 'dashed'
ls[0.6] = 'dotted'

markers = {} # empty dictionary
markers[1.0] = 'o'
markers[0.8] = '^'
markers[0.6] = 'd'

Next, we’ll use pyPRISM to calculate data at three densities for a linear polymer melt of of gaussian chains of length
16000, as described in Reference 1. Notice how we store the resulting “guess” from the previous density and use it as
the starting guess for the next density. After solving, note how many iterations each density took.

[8]: sys = pyPRISM.System(['polymer'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.005,length=32768)
sys.diameter['polymer'] = 1.0
sys.closure['polymer','polymer'] = pyPRISM.closure.PercusYevick()
sys.potential['polymer','polymer'] = pyPRISM.potential.HardSphere()
sys.omega['polymer','polymer'] = pyPRISM.omega.Gaussian(sigma=sys.diameter['polymer',
→˓'polymer'],length=16000)

gr_results = []
sk_results = []
guess = np.zeros_like(sys.domain.r)
for density in [0.6,0.8,1.0]:

print('==> Solving for density {}'.format(density))
sys.density['polymer'] = density
PRISM = sys.createPRISM()
result = PRISM.solve(guess)
guess = np.copy(PRISM.x)

y = pyPRISM.calculate.structure_factor(PRISM)['polymer','polymer']
x = sys.domain.k
sk_results.append([density,x,y])

x = sys.domain.r
y = pyPRISM.calculate.pair_correlation(PRISM)['polymer','polymer']
gr_results.append([density,x,y])
print('')

print('Done!')

==> Solving for density 0.6
0: |F(x)| = 81.9231; step 0.186349; tol 0.593894
1: |F(x)| = 81.8849; step 0.00049023; tol 0.89916
2: |F(x)| = 81.6474; step 0.003047; tol 0.894787
3: |F(x)| = 81.6472; step 2.06434e-06; tol 0.899996
4: |F(x)| = 81.6443; step 3.76541e-05; tol 0.899936

(continues on next page)

4.4. Tutorial 87

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

5: |F(x)| = 81.5191; step 0.00161753; tol 0.897241
6: |F(x)| = 52.1202; step 0.15956; tol 0.724537
7: |F(x)| = 46.0427; step 1; tol 0.702348
8: |F(x)| = 42.036; step 1; tol 0.750178
9: |F(x)| = 41.0872; step 1; tol 0.859828
10: |F(x)| = 40.8693; step 1; tol 0.89048
11: |F(x)| = 40.8594; step 1; tol 0.899568
12: |F(x)| = 40.8594; step 1; tol 0.899996
13: |F(x)| = 40.8593; step 1; tol 0.899999
14: |F(x)| = 40.8593; step 1; tol 0.9
15: |F(x)| = 40.8593; step 1; tol 0.9
16: |F(x)| = 48.9979; step 1; tol 0.9999
17: |F(x)| = 40.8604; step 1; tol 0.89982
18: |F(x)| = 40.8585; step 0.0185991; tol 0.899916
19: |F(x)| = 48.2255; step 1; tol 0.9999
20: |F(x)| = 39.8334; step 1; tol 0.89982
21: |F(x)| = 39.4845; step 0.494518; tol 0.884299
22: |F(x)| = 34.0081; step 1; tol 0.703786
23: |F(x)| = 46.7361; step 1; tol 0.9999
24: |F(x)| = 41.5151; step 0.431742; tol 0.89982
25: |F(x)| = 46.705; step 1; tol 0.9999
26: |F(x)| = 41.7892; step 0.407615; tol 0.89982
27: |F(x)| = 37.32; step 1; tol 0.728708
28: |F(x)| = 45.2683; step 1; tol 0.9999
29: |F(x)| = 41.8015; step 1; tol 0.89982
30: |F(x)| = 35.7199; step 1; tol 0.728708
31: |F(x)| = 34.5162; step 0.419989; tol 0.840364
32: |F(x)| = 47.4471; step 1; tol 0.9999
33: |F(x)| = 36.6828; step 1; tol 0.89982
34: |F(x)| = 32.6796; step 1; tol 0.728708
35: |F(x)| = 32.3298; step 0.0507434; tol 0.880832
36: |F(x)| = 38.8325; step 1; tol 0.9999
37: |F(x)| = 32.9971; step 1; tol 0.89982
38: |F(x)| = 32.4921; step 0.476009; tol 0.872663
39: |F(x)| = 39.0104; step 1; tol 0.9999
40: |F(x)| = 33.1882; step 1; tol 0.89982
41: |F(x)| = 33.0107; step 0.450081; tol 0.890398
42: |F(x)| = 36.9105; step 1; tol 0.9999
43: |F(x)| = 32.3099; step 1; tol 0.89982
44: |F(x)| = 30.6935; step 0.0565517; tol 0.812199
45: |F(x)| = 27.2482; step 0.282094; tol 0.709296
46: |F(x)| = 27.1626; step 0.00388862; tol 0.89435
47: |F(x)| = 24.9831; step 1; tol 0.761364
48: |F(x)| = 23.4707; step 0.28068; tol 0.794334
49: |F(x)| = 20.5345; step 1; tol 0.688905
50: |F(x)| = 18.9605; step 0.17719; tol 0.767312
51: |F(x)| = 14.6473; step 1; tol 0.537103
52: |F(x)| = 14.3981; step 0.0218796; tol 0.869634
53: |F(x)| = 11.786; step 1; tol 0.680637
54: |F(x)| = 10.4035; step 0.160641; tol 0.701247
55: |F(x)| = 8.94065; step 0.300383; tol 0.664692
56: |F(x)| = 7.92109; step 1; tol 0.706438
57: |F(x)| = 4.49779; step 1; tol 0.449149
58: |F(x)| = 2.77687; step 1; tol 0.343047
59: |F(x)| = 0.622838; step 1; tol 0.105913
60: |F(x)| = 0.0143531; step 1; tol 0.000477952
61: |F(x)| = 2.56211e-06; step 1; tol 2.86778e-08

(continues on next page)

88 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

==> Solving for density 0.8
0: |F(x)| = 0.706714; step 1; tol 0.000751233
1: |F(x)| = 0.0284976; step 1; tol 0.00146343
2: |F(x)| = 7.05967e-05; step 1; tol 5.52325e-06

==> Solving for density 1.0
0: |F(x)| = 0.413714; step 1; tol 0.000691077
1: |F(x)| = 0.018618; step 1; tol 0.00182267
2: |F(x)| = 5.4341e-05; step 1; tol 7.6671e-06

Done!

We start by reproducing Figure 1 of Reference 1.

[9]: %%opts Overlay [legend_position='bottom_right']
from math import sqrt

extents = (0,0,0.6,1.0)

gr_plots = []
for rho,x,y in gr_results:

Rg = sqrt(16000/6.0)
label = 'rho={} (pyPRISM)'.format(rho)
style = {'line_dash':ls[rho],'color':colors[rho]}
c1 = hv.Curve((x/Rg,y),label=label,extents=extents)(style=style)
gr_plots.append(c1)

for rho,x,y in gr_compare:
label = 'rho={} (Ref 1)'.format(rho)
style = {'marker':markers[rho],'color':colors[rho]}
c1 = hv.Scatter((x,y),label=label,extents=extents)(style=style)
gr_plots.append(c1)

hv.Overlay(gr_plots).redim.label(x='r',y='g(r)')

[9]: :Overlay
.Curve.Rho_equals_0_full_stop_6_left_parenthesis_pyPRISM_right_parenthesis :Curve

→˓ [x] (y)
.Curve.Rho_equals_0_full_stop_8_left_parenthesis_pyPRISM_right_parenthesis :Curve

→˓ [x] (y)
.Curve.Rho_equals_1_full_stop_0_left_parenthesis_pyPRISM_right_parenthesis :Curve

→˓ [x] (y)
.Scatter.Rho_equals_0_full_stop_6_left_parenthesis_Ref_1_right_parenthesis :

→˓Scatter [x] (y)
.Scatter.Rho_equals_0_full_stop_8_left_parenthesis_Ref_1_right_parenthesis :

→˓Scatter [x] (y)
.Scatter.Rho_equals_1_full_stop_0_left_parenthesis_Ref_1_right_parenthesis :

→˓Scatter [x] (y)

Next, we reproduce Figure 3:

[10]: sk_plots = []
for rho,x,y in sk_results:

yd = y - 1.0
label = 'rho={} (pyPRISM)'.format(rho)

(continues on next page)

4.4. Tutorial 89

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

style = {'line_dash':ls[rho],'color':colors[rho]}
c1 = hv.Curve((x,yd/yd[0]),label=label,extents=(0,0,3,None))(style=style)
sk_plots.append(c1)

for rho,x,y in sk_compare:
style = {'marker':markers[rho],'color':colors[rho]}
c1 = hv.Scatter((x,y),label='rho={} (Ref 1)'.format(rho),extents=(0.0,0,3,

→˓None))(style=style)
sk_plots.append(c1)

hv.Overlay(sk_plots).redim.label(x='k',y='(S(k)-1)/(S(0)-1)')

[10]: :Overlay
.Curve.Rho_equals_0_full_stop_6_left_parenthesis_pyPRISM_right_parenthesis :Curve

→˓ [x] (y)
.Curve.Rho_equals_0_full_stop_8_left_parenthesis_pyPRISM_right_parenthesis :Curve

→˓ [x] (y)
.Curve.Rho_equals_1_full_stop_0_left_parenthesis_pyPRISM_right_parenthesis :Curve

→˓ [x] (y)
.Scatter.Rho_equals_0_full_stop_6_left_parenthesis_Ref_1_right_parenthesis :

→˓Scatter [x] (y)
.Scatter.Rho_equals_0_full_stop_8_left_parenthesis_Ref_1_right_parenthesis :

→˓Scatter [x] (y)
.Scatter.Rho_equals_1_full_stop_0_left_parenthesis_Ref_1_right_parenthesis :

→˓Scatter [x] (y)

Finally, we reproduce the inset of Figure 3:

[11]: sk0_plots = []
for rho,x,y in sk_results:

yd = y - 1
label = 'rho={} (pyPRISM)'.format(rho)
style = {'line_dash':ls[rho],'color':colors[rho]}
c1 = hv.Scatter((rho,yd[0]),label=label,extents=(0.4,0,1.2,11))(style=style)
sk0_plots.append(c1)

hv.Overlay(sk0_plots).redim.label(x='rho',y='S(0)')

[11]: :Overlay
.Scatter.Rho_equals_0_full_stop_6_left_parenthesis_pyPRISM_right_parenthesis :

→˓Scatter [x] (y)
.Scatter.Rho_equals_0_full_stop_8_left_parenthesis_pyPRISM_right_parenthesis :

→˓Scatter [x] (y)
.Scatter.Rho_equals_1_full_stop_0_left_parenthesis_pyPRISM_right_parenthesis :

→˓Scatter [x] (y)

Ring Homopolymer Melt: Comparison to Literature

As a comparison, we’ll now focus on a ring-homopolymer melt as described in [Ref. 2]. This paper is actually the
first full paper in which PRISM theory was described.

Again, to start we define the aesthetics of the plots.

90 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

[12]: %opts Curve Scatter [width=500,height=400] Layout [shared_axes=False] Scatter
→˓(size=10,alpha=0.5)
%opts Curve Scatter [fontsize={'xlabel':14,'xlabel':14,'ylabel':14,'ticks':12}]
%opts Overlay [legend_position='bottom_left']
%opts Layout [shared_axes=False]

colors = {}
colors[2000] = 'blue'
colors[500] = 'red'
colors[100] = 'green'

ls = {}
ls[2000] = 'solid'
ls[500] = 'dashed'
ls[100] = 'dotted'

markers = {}
markers[2000] = 'o'
markers[500] = '^'
markers[100] = 'd'

[13]: gr_compare = []
for density in [2000,500,100]:

fname = '../data/RingMelt-Gr-N{}.csv'.format(density)
x,y = np.loadtxt(fname,delimiter=',').T
gr_compare.append([density,x,y])

Now we do the PRISM calculation. . .

[14]: sys = pyPRISM.System(['polymer'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.05,length=4096)
sys.diameter['polymer'] = 1.0
sys.density['polymer'] = 0.9
sys.closure['polymer','polymer'] = pyPRISM.closure.PercusYevick()
sys.potential['polymer','polymer'] = pyPRISM.potential.HardSphere()

gr_results = []
guess = np.zeros_like(sys.domain.r)
for length in [2000,500,100]:

print('==> Solving for gaussian ring of length {}'.format(length))
sys.omega['polymer','polymer'] = pyPRISM.omega.GaussianRing(sigma=sys.diameter[

→˓'polymer','polymer'],length=length)
PRISM = sys.createPRISM()
result = PRISM.solve(guess)
guess = np.copy(PRISM.x)

x = sys.domain.r
y = pyPRISM.calculate.pair_correlation(PRISM)['polymer','polymer']
gr_results.append(['ring',length,x,y])

print('Done!')

==> Solving for gaussian ring of length 2000
0: |F(x)| = 13.564; step 0.116955; tol 0.701605
1: |F(x)| = 12.8877; step 0.0499993; tol 0.812488

(continues on next page)

4.4. Tutorial 91

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

2: |F(x)| = 12.6488; step 0.0187059; tol 0.866947
3: |F(x)| = 11.7434; step 0.0724084; tol 0.775771
4: |F(x)| = 11.7428; step 5.40487e-05; tol 0.899907
5: |F(x)| = 11.7419; step 7.80313e-05; tol 0.899865
6: |F(x)| = 11.7406; step 0.000120235; tol 0.899793
7: |F(x)| = 11.7383; step 0.000203317; tol 0.899649
8: |F(x)| = 11.7339; step 0.000393242; tol 0.899322
9: |F(x)| = 11.7233; step 0.000937021; tol 0.898386
10: |F(x)| = 11.6878; step 0.00316625; tol 0.894554
11: |F(x)| = 11.4713; step 0.0193873; tol 0.866966
12: |F(x)| = 11.4571; step 0.00132076; tol 0.897765
13: |F(x)| = 11.4557; step 0.000126257; tol 0.899787
14: |F(x)| = 11.453; step 0.0002504; tol 0.899577
15: |F(x)| = 11.4463; step 0.000621288; tol 0.89895
16: |F(x)| = 11.4221; step 0.00225248; tol 0.896198
17: |F(x)| = 11.2524; step 0.0158588; tol 0.873447
18: |F(x)| = 11.2523; step 6.45276e-06; tol 0.899989
19: |F(x)| = 11.2522; step 8.00376e-06; tol 0.899987
20: |F(x)| = 11.2521; step 1.01827e-05; tol 0.899983
21: |F(x)| = 11.252; step 1.32855e-05; tol 0.899978
22: |F(x)| = 11.2518; step 1.79953e-05; tol 0.89997
23: |F(x)| = 11.2515; step 2.55292e-05; tol 0.899958
24: |F(x)| = 11.2511; step 3.83886e-05; tol 0.899936
25: |F(x)| = 11.2505; step 6.28229e-05; tol 0.899896
26: |F(x)| = 11.2493; step 0.000115591; tol 0.899808
27: |F(x)| = 11.2467; step 0.000254364; tol 0.899578
28: |F(x)| = 11.2389; step 0.000750361; tol 0.898757
29: |F(x)| = 11.2005; step 0.00371077; tol 0.893866
30: |F(x)| = 10.7864; step 0.0403192; tol 0.834678
31: |F(x)| = 10.4959; step 0.0314757; tol 0.85217
32: |F(x)| = 10.4731; step 0.00275572; tol 0.896107
33: |F(x)| = 10.1771; step 0.0362332; tol 0.849843
34: |F(x)| = 10.1755; step 0.000245052; tol 0.899704
35: |F(x)| = 10.1582; step 0.00253582; tol 0.896942
36: |F(x)| = 9.98704; step 0.025387; tol 0.869934
37: |F(x)| = 9.97755; step 0.0016413; tol 0.898291
38: |F(x)| = 9.80201; step 0.0306349; tol 0.868609
39: |F(x)| = 9.80165; step 7.641e-05; tol 0.899935
40: |F(x)| = 9.8015; step 3.34378e-05; tol 0.899972
41: |F(x)| = 9.80082; step 0.000147167; tol 0.899875
42: |F(x)| = 9.79355; step 0.00157967; tol 0.898665
43: |F(x)| = 9.69962; step 0.0206006; tol 0.882819
44: |F(x)| = 9.67173; step 0.00710773; tol 0.894833
45: |F(x)| = 9.66218; step 0.00256072; tol 0.898222
46: |F(x)| = 9.64319; step 0.0051766; tol 0.896467
47: |F(x)| = 9.58713; step 0.0158394; tol 0.889566
48: |F(x)| = 9.54215; step 0.0142497; tol 0.891575
49: |F(x)| = 9.49661; step 0.0159618; tol 0.89143
50: |F(x)| = 9.48357; step 0.00511646; tol 0.897529
51: |F(x)| = 9.48304; step 0.000214479; tol 0.8999
52: |F(x)| = 9.47626; step 0.00275702; tol 0.898713
53: |F(x)| = 9.44666; step 0.0122378; tol 0.894388
54: |F(x)| = 9.41731; step 0.0131669; tol 0.894416
55: |F(x)| = 9.38668; step 0.0149674; tol 0.894154
56: |F(x)| = 9.37647; step 0.00548425; tol 0.898045
57: |F(x)| = 9.35142; step 0.00696148; tol 0.895196
58: |F(x)| = 9.34054; step 0.00456984; tol 0.897907

(continues on next page)

92 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

59: |F(x)| = 9.33118; step 0.00387752; tol 0.898198
60: |F(x)| = 9.33091; step 9.42877e-05; tol 0.899948
61: |F(x)| = 9.30692; step 0.00906009; tol 0.895377
62: |F(x)| = 9.26985; step 0.0154426; tol 0.892846
63: |F(x)| = 9.26204; step 0.00362434; tol 0.898483
64: |F(x)| = 9.23088; step 0.0160041; tol 0.893954
65: |F(x)| = 9.22582; step 0.00330641; tol 0.899015
66: |F(x)| = 9.2188; step 0.00389694; tol 0.898631
67: |F(x)| = 9.20601; step 0.00567855; tol 0.897503
68: |F(x)| = 9.18625; step 0.0109425; tol 0.896142
69: |F(x)| = 9.14046; step 0.0194129; tol 0.891049
70: |F(x)| = 9.11915; step 0.00957558; tol 0.895808
71: |F(x)| = 9.1081; step 0.00603236; tol 0.89782
72: |F(x)| = 9.08375; step 0.0136708; tol 0.895195
73: |F(x)| = 9.07434; step 0.00476936; tol 0.898136
74: |F(x)| = 9.07327; step 0.000515113; tol 0.899787
75: |F(x)| = 9.06892; step 0.0020917; tol 0.899138
76: |F(x)| = 9.05313; step 0.00790108; tol 0.896869
77: |F(x)| = 9.0377; step 0.00804661; tol 0.896935
78: |F(x)| = 9.00401; step 0.0164117; tol 0.893303
79: |F(x)| = 8.97103; step 0.0167142; tol 0.893419
80: |F(x)| = 8.97027; step 0.00040741; tol 0.899847
81: |F(x)| = 8.95825; step 0.00655805; tol 0.897591
82: |F(x)| = 8.94265; step 0.00873797; tol 0.896866
83: |F(x)| = 8.93898; step 0.00177432; tol 0.899263
84: |F(x)| = 8.93109; step 0.00431515; tol 0.898412
85: |F(x)| = 8.93102; step 3.81577e-05; tol 0.899986
86: |F(x)| = 8.92359; step 0.0043836; tol 0.898502
87: |F(x)| = 8.89848; step 0.0127696; tol 0.894942
88: |F(x)| = 8.89697; step 0.000852819; tol 0.899694
89: |F(x)| = 8.87556; step 0.0122856; tol 0.895674
90: |F(x)| = 8.85198; step 0.0132539; tol 0.895225
91: |F(x)| = 8.84007; step 0.00638331; tol 0.89758
92: |F(x)| = 8.82702; step 0.00722105; tol 0.897344
93: |F(x)| = 8.82701; step 3.24097e-06; tol 0.899999
94: |F(x)| = 7.27724; step 1; tol 0.728998
95: |F(x)| = 1.87778; step 1; tol 0.478294
96: |F(x)| = 1.39712; step 0.417561; tol 0.498219
97: |F(x)| = 0.892148; step 1; tol 0.366988
98: |F(x)| = 0.19859; step 1; tol 0.121212
99: |F(x)| = 0.00803493; step 1; tol 0.0014733
100: |F(x)| = 4.27395e-05; step 1; tol 2.54646e-05
101: |F(x)| = 8.29099e-10; step 1; tol 3.38685e-10
==> Solving for gaussian ring of length 500
0: |F(x)| = 0.0018377; step 1; tol 5.01925e-08
1: |F(x)| = 1.16134e-06; step 1; tol 3.59432e-07
==> Solving for gaussian ring of length 100
0: |F(x)| = 0.0146501; step 1; tol 5.13412e-06
1: |F(x)| = 7.48487e-05; step 1; tol 2.34925e-05
2: |F(x)| = 2.44558e-09; step 1; tol 9.60811e-10
Done!

Here we reproduce Figure 1 of Reference 1.

[15]: %%opts Overlay [legend_position='bottom_right']
from math import sqrt

(continues on next page)

4.4. Tutorial 93

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

extents = (0,0,13,1.0)

gr_plots = []
for name,N,x,y in gr_results:

label = 'N={} (PRISM)'.format(N)
style = {'line_dash':ls[N],'color':colors[N]}
c1 = hv.Curve((x,y),label=label,extents=extents)(style=style)
gr_plots.append(c1)

for N,x,y in gr_compare:
label = 'N={} (Ref 2)'.format(N)
style = {'marker':markers[N],'color':colors[N]}
c1 = hv.Scatter((x,y),label=label,extents=extents)(style=style)
gr_plots.append(c1)

hv.Overlay(gr_plots).redim.label(x='r',y='g(r)')

[15]: :Overlay
.Curve.N_equals_2000_left_parenthesis_PRISM_right_parenthesis :Curve [x] (y)
.Curve.N_equals_500_left_parenthesis_PRISM_right_parenthesis :Curve [x] (y)
.Curve.N_equals_100_left_parenthesis_PRISM_right_parenthesis :Curve [x] (y)
.Scatter.N_equals_2000_left_parenthesis_Ref_2_right_parenthesis :Scatter [x]

→˓(y)
.Scatter.N_equals_500_left_parenthesis_Ref_2_right_parenthesis :Scatter [x]

→˓(y)
.Scatter.N_equals_100_left_parenthesis_Ref_2_right_parenthesis :Scatter [x]

→˓(y)

Summary

With both the previous and this notebook finished, we have covered a basic monomer fluid system and two “real-
world” polymer systems. We have verified that the pyPRISM implementation matches previous implementations by
reproducing data from the literature. Finally, we have begun to touch on two more advanced topics: solving difficult
to converge systems and using loops to scan parameter spaces. We will go into more detail on both of these topics in
the following notebooks.

NB0.Introduction · NB1.PythonBasics · NB2.Theory.General · NB3.Theory.PRISM · NB4.pyPRISM.Overview
· NB5.CaseStudies.PolymerMelts · NB6.CaseStudies.Nanocomposites · NB7.CaseStudies.Copolymers ·
NB8.pyPRISM.Internals · NB9.pyPRISM.Advanced

[]:

Case Studies: Nanocomposites

There have been many PRISM-based theoretical studies focused on understanding how the design of the filler and
matrix material in polymer nanocomposites (PNCs) lead to controlled morphologies and particle/filler dispersion in
the matrix; much of this work is summarized in several recent reviews.[1-3] Traditional simulation methodologies are
challenged to equilibrate large PNC systems with long matrix chains because the relaxation times of these systems are
often much longer than comparable simulations at lower densities and/or short matrix chains. Results from PRISM

94 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

calculations are, by definition, equilibrium predictions so that relaxation times and equilibration are not a problem.
Furthermore, the problem of finite-size effects is not present in PRISM theory.

Concepts Used

• Multicomponent PRISM

• Phase space “hopping”

• Heterogeneous interactions

• Domain interpolation

• Complex molecular structure

• Simulation derived �̂�(𝑘)

Tools Used

• pyPRISM.calculate.pair_correlation

• pyPRISM.calculate.pmf

References

1. Ganesan, V. and A. Jayaraman, Theory and simulation studies of effective interactions, phase behavior and
morphology in polymer nanocomposites. Soft Matter, 2014. 10(1): p. 13-38.

2. Jayaraman, A. and N. Nair, Integrating PRISM theory and Monte Carlo simulation to study polymer-
functionalised particles and polymer nanocomposites. Molecular Simulation, 2012. 38(8-9): p. 751-761.

3. Hall, L.M., A. Jayaraman, and K.S. Schweizer, Molecular theories of polymer nanocomposites. Current Opinion
in Solid State and Materials Science, 2010. 14(2): p. 38-48.

4. Hooper, J.B.; Schweizer, K.S.; Contact Aggregation, Bridging, and Steric Stabilization in Dense Polymer Parti-
cle Mixtures, Macromolecules 2005, 38, 8858-8869

5. Modica, K.J.; Martin, T.B.; Jayaraman, A.J.; Effect of Architecture on the Structure and Interactions of Polymer
Grafted Particles: Theory and Simulation, Macromolecules, 2017, 50 (12), pp 4854-4866

Notebook Setup

To begin, please run Kernel-> Restart & Clear Output from the menu at the top of the notebook. It is a
good idea to run this before starting any notebook so that the notebook is fresh for the user. Next, run the cell below
(via the top menu-bar or <Shift-Enter>. If the cell throws an import error, there is likely something wrong with
your environment.

If successful, you should see a set of logos appear below the cell. Which logos appear depend on what is inside the
hv.extension() command at the bottom of the cell. If no logos appear and the cell throws an error, there is likely
something wrong with your environment.

4.4. Tutorial 95

pyPRISM Documentation, Release v1.0.4

Troubleshooting:

• Did you activate the correct conda environment before starting the jupyter notebook?

• If not using anaconda, did you install all dependencies before starting the jupyter notebook?

• Is pyPRISM installed in your current environment on your PYTHONPATH?

Holoviews + Bokeh Logos:

[1]: import pyPRISM
import numpy as np
import holoviews as hv
hv.extension('bokeh')

def interpolate_guess(domain_from,domain_to,rank,guess):
'''Helper for upscaling the intial guesses'''
guess = guess.reshape((domain_from.length,rank,rank))
new_guess = np.zeros((domain_to.length,rank,rank))
for i in range(rank):

for j in range(rank):
new_guess[:,i,j] = np.interp(domain_to.r,domain_from.r,guess[:,i,j])

return new_guess.reshape((-1,))

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_load.v0+json

<IPython.core.display.HTML object>

Bare Particle Nanocomposite

In this example, we use pyPRISM to study a polymer nanocomposite system in which polymer chains of length N
= 100 are mixed with a bare nanoparticle.[4] The nanoparticle is of diameter D = 16d, where d is the diameter of
one segment of the polymer chain (either a monomer or a coarse-grained bead). We plot the particle-particle pair
correlations as a function of the range of the particle-polymer attraction.

As usual, we’ll define the plot aesthetics first.

[2]: %opts Curve Scatter [width=500,height=400] Layout [shared_axes=False] Scatter
→˓(size=10,alpha=0.5)
%opts Curve Scatter [fontsize={'xlabel':14,'xlabel':14,'ylabel':14,'ticks':12}]
%opts Overlay [legend_position='bottom_left']
%opts Layout [shared_axes=False]

colors = {}
colors[1.0] = 'blue'
colors[0.5] = 'red'
colors[0.25] = 'green'

ls = {}

(continues on next page)

96 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

ls[1.0] = 'solid'
ls[0.5] = 'dashed'
ls[0.25] = 'dotted'

markers = {}
markers[1.0] = 'o'
markers[0.5] = '^'
markers[0.25] = 'd'

First, we load the reference data from Ref. 4

[3]: gr_compare = []
for density in [1.0,0.5,0.25]:

fname = '../data/BareComposite-Gr-alpha{}.csv'.format(density)
x,y = np.loadtxt(fname,delimiter=',').T
gr_compare.append([density,x,y])

Next, we need to solve the PRISM equations, but we can’t solve for the particle size we want (D=16d) directly.
You can try it, but pyPRISM won’t be able to converge the equations. Instead, we sequentially solve the PRISM
equations starting for a small diameter particle and progressively increase the particle size. Each successive loop (or
particle diameter) uses the solution from the last loop as a starting guess, greatly increasing the ability of pyPRISM to
converge. This process is the so-called “phase space hopping”.

[4]: d = 1.0 #polymer segment diameter
phi = 0.001 #volume fraction of nanoparticles
eta = 0.4 #total occupied volume fraction

sys = pyPRISM.System(['particle','polymer'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)

guess = np.zeros(sys.rank*sys.rank*sys.domain.length)
for D in np.arange(1.0,16.5,0.5):

print('==> Solving for nanoparticle diameter D=',D)

sys.diameter['polymer'] = d
sys.diameter['particle'] = D
sys.density['polymer'] = (1-phi)*eta/sys.diameter.volume['polymer']
sys.density['particle'] = phi*eta/sys.diameter.volume['particle']
print('--> rho=',sys.density['polymer'],sys.density['particle'])

sys.omega['polymer','polymer'] = pyPRISM.omega.FreelyJointedChain(length=100,l=4.
→˓0*d/3.0)

sys.omega['polymer','particle'] = pyPRISM.omega.InterMolecular()
sys.omega['particle','particle'] = pyPRISM.omega.SingleSite()

sys.potential['polymer','polymer'] = pyPRISM.potential.HardSphere()
sys.potential['polymer','particle'] = pyPRISM.potential.Exponential(alpha=0.5,

→˓epsilon=1.0)
sys.potential['particle','particle'] = pyPRISM.potential.HardSphere()

sys.closure['polymer','polymer'] = pyPRISM.closure.PercusYevick()
sys.closure['polymer','particle'] = pyPRISM.closure.PercusYevick()
sys.closure['particle','particle'] = pyPRISM.closure.HyperNettedChain()

PRISM = sys.createPRISM()

(continues on next page)

4.4. Tutorial 97

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

result = PRISM.solve(guess)

guess = np.copy(PRISM.x)

print('')

last_guess=guess
print('Done!')

==> Solving for nanoparticle diameter D= 1.0
--> rho= 0.7631797831142566 0.0007639437268410977
0: |F(x)| = 3.35879; step 1; tol 0.476156
1: |F(x)| = 0.752641; step 1; tol 0.204052
2: |F(x)| = 0.189662; step 1; tol 0.0571517
3: |F(x)| = 0.0163282; step 1; tol 0.00667045
4: |F(x)| = 8.51675e-05; step 1; tol 2.44859e-05
5: |F(x)| = 5.70769e-07; step 1; tol 4.04217e-05

==> Solving for nanoparticle diameter D= 1.5
--> rho= 0.7631797831142566 0.00022635369684180674
0: |F(x)| = 2.51597; step 1; tol 0.291082
1: |F(x)| = 0.0149118; step 1; tol 3.1615e-05
2: |F(x)| = 1.30481e-06; step 1; tol 6.89089e-09

==> Solving for nanoparticle diameter D= 2.0
--> rho= 0.7631797831142566 9.549296585513722e-05

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 1.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 1.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

0: |F(x)| = 4.36967; step 1; tol 0.268366
1: |F(x)| = 0.0170008; step 1; tol 1.36234e-05
2: |F(x)| = 3.64061e-06; step 1; tol 4.12714e-08

==> Solving for nanoparticle diameter D= 2.5
--> rho= 0.7631797831142566 4.889239851783025e-05
0: |F(x)| = 13.3593; step 0.449922; tol 0.456306
1: |F(x)| = 4.12463; step 1; tol 0.187394
2: |F(x)| = 3.46116; step 0.183782; tol 0.633747
3: |F(x)| = 2.87865; step 0.21045; tol 0.622555
4: |F(x)| = 2.31803; step 0.340597; tol 0.583582
5: |F(x)| = 1.22038; step 1; tol 0.306511

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 1.75 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 1.75 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

98 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

6: |F(x)| = 0.844008; step 0.355097; tol 0.430475
7: |F(x)| = 0.558075; step 1; tol 0.393491
8: |F(x)| = 0.0332253; step 1; tol 0.139352
9: |F(x)| = 0.00112344; step 1; tol 0.00102897
10: |F(x)| = 0.000120797; step 1; tol 0.0104053
11: |F(x)| = 5.73715e-07; step 1; tol 2.03013e-05

==> Solving for nanoparticle diameter D= 3.0
--> rho= 0.7631797831142566 2.8294212105225843e-05
0: |F(x)| = 33.8126; step 1; tol 0.678155
1: |F(x)| = 28.0988; step 1; tol 0.621528
2: |F(x)| = 8.49318; step 1; tol 0.347667
3: |F(x)| = 7.99288; step 0.0674904; tol 0.797092
4: |F(x)| = 7.53265; step 0.0695425; tol 0.799339
5: |F(x)| = 6.96739; step 0.107141; tol 0.769994
6: |F(x)| = 6.09455; step 0.289239; tol 0.688628
7: |F(x)| = 5.23117; step 0.400351; tol 0.663066
8: |F(x)| = 4.61057; step 0.207589; tol 0.699124
9: |F(x)| = 3.87016; step 0.465009; tol 0.634148
10: |F(x)| = 2.38955; step 1; tol 0.361929
11: |F(x)| = 0.493714; step 1; tol 0.117894
12: |F(x)| = 0.0313452; step 1; tol 0.00362772
13: |F(x)| = 0.000587425; step 1; tol 0.000316086
14: |F(x)| = 1.01368e-06; step 1; tol 2.68003e-06

==> Solving for nanoparticle diameter D= 3.5
--> rho= 0.7631797831142566 1.7817929489005196e-05
0: |F(x)| = 17.5377; step 1; tol 0.121571
1: |F(x)| = 0.0765622; step 1; tol 1.71525e-05

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 2.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 2.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

2: |F(x)| = 0.000193902; step 1; tol 5.77267e-06
3: |F(x)| = 2.52679e-09; step 1; tol 1.52833e-10

==> Solving for nanoparticle diameter D= 4.0
--> rho= 0.7631797831142566 1.1936620731892152e-05
0: |F(x)| = 22.5886; step 1; tol 0.102406
1: |F(x)| = 0.105308; step 1; tol 1.95609e-05
2: |F(x)| = 0.000304109; step 1; tol 7.50543e-06
3: |F(x)| = 1.11149e-08; step 1; tol 1.20224e-09

==> Solving for nanoparticle diameter D= 4.5
--> rho= 0.7631797831142566 8.38347025340025e-06
0: |F(x)| = 84.8999; step 1; tol 0.318629
1: |F(x)| = 0.625624; step 1; tol 4.88714e-05

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 2.75 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 2.75 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!

(continues on next page)

4.4. Tutorial 99

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

warnings.warn(warn_text)

2: |F(x)| = 0.00991608; step 1; tol 0.000226098
3: |F(x)| = 1.58233e-06; step 1; tol 2.29169e-08

==> Solving for nanoparticle diameter D= 5.0
--> rho= 0.7631797831142566 6.1115498147287816e-06
0: |F(x)| = 39.3476; step 1; tol 0.0665939
1: |F(x)| = 0.147671; step 1; tol 1.26764e-05
2: |F(x)| = 0.0014265; step 1; tol 8.39835e-05
3: |F(x)| = 2.326e-08; step 1; tol 2.39286e-10

==> Solving for nanoparticle diameter D= 5.5
--> rho= 0.7631797831142566 4.591697832253028e-06
0: |F(x)| = 141.56; step 1; tol 0.207739
1: |F(x)| = 1.19746; step 1; tol 6.43995e-05
2: |F(x)| = 0.0378919; step 1; tol 0.000901184

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 3.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 3.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

3: |F(x)| = 7.66943e-06; step 1; tol 3.68703e-08

==> Solving for nanoparticle diameter D= 6.0
--> rho= 0.7631797831142566 3.5367765131532304e-06
0: |F(x)| = 62.1156; step 1; tol 0.045593
1: |F(x)| = 0.407947; step 1; tol 3.88193e-05
2: |F(x)| = 0.00412423; step 1; tol 9.19861e-05
3: |F(x)| = 4.59293e-08; step 1; tol 1.11619e-10

==> Solving for nanoparticle diameter D= 6.5
--> rho= 0.7631797831142566 2.7817705119384533e-06
0: |F(x)| = 207.772; step 1; tol 0.132233
1: |F(x)| = 15.1124; step 1; tol 0.0047614
2: |F(x)| = 3.13; step 1; tol 0.0386067
3: |F(x)| = 0.0577293; step 1; tol 0.000306159

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 3.75 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 3.75 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

4: |F(x)| = 9.18447e-05; step 1; tol 2.27802e-06
5: |F(x)| = 3.75471e-09; step 1; tol 1.50413e-09

==> Solving for nanoparticle diameter D= 7.0
--> rho= 0.7631797831142566 2.2272411861256494e-06
0: |F(x)| = 277.284; step 1; tol 0.120386
1: |F(x)| = 4.18104; step 1; tol 0.000204626

(continues on next page)

100 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

2: |F(x)| = 0.160302; step 1; tol 0.00132297
3: |F(x)| = 1.6376e-05; step 1; tol 9.39248e-09

==> Solving for nanoparticle diameter D= 7.5
--> rho= 0.7631797831142566 1.8108295747344538e-06
0: |F(x)| = 117.836; step 1; tol 0.0286554
1: |F(x)| = 2.76609; step 1; tol 0.000495926
2: |F(x)| = 0.0152838; step 1; tol 2.74772e-05

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 4.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 4.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

3: |F(x)| = 0.000112244; step 1; tol 4.85406e-05
4: |F(x)| = 3.3387e-08; step 1; tol 7.96289e-08

==> Solving for nanoparticle diameter D= 8.0
--> rho= 0.7631797831142566 1.492077591486519e-06
0: |F(x)| = 397.936; step 1; tol 0.0940404
1: |F(x)| = 10.4781; step 1; tol 0.000623994
2: |F(x)| = 0.8405; step 1; tol 0.00579099
3: |F(x)| = 0.00383529; step 1; tol 1.87398e-05
4: |F(x)| = 2.39322e-05; step 1; tol 3.50438e-05

==> Solving for nanoparticle diameter D= 8.5
--> rho= 0.7631797831142566 1.2439547760490093e-06
0: |F(x)| = 176.473; step 1; tol 0.0261535
1: |F(x)| = 3.76473; step 1; tol 0.000409592
2: |F(x)| = 0.0324109; step 1; tol 6.67051e-05

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 4.75 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 4.75 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

3: |F(x)| = 1.7509e-06; step 1; tol 2.62653e-09

==> Solving for nanoparticle diameter D= 9.0
--> rho= 0.7631797831142566 1.0479337816750313e-06
0: |F(x)| = 574.84; step 1; tol 0.0829008
1: |F(x)| = 15.9181; step 1; tol 0.00069013
2: |F(x)| = 1.65015; step 1; tol 0.00967176
3: |F(x)| = 0.00655294; step 1; tol 1.41928e-05
4: |F(x)| = 0.000175832; step 1; tol 0.000647989
5: |F(x)| = 3.67023e-08; step 1; tol 3.92132e-08

==> Solving for nanoparticle diameter D= 9.5
--> rho= 0.7631797831142566 8.910263616749937e-07
0: |F(x)| = 239.797; step 1; tol 0.0215953
1: |F(x)| = 11.0745; step 1; tol 0.00191958

(continues on next page)

4.4. Tutorial 101

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

2: |F(x)| = 0.0434715; step 1; tol 1.38676e-05

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 5.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 5.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

3: |F(x)| = 4.73801e-06; step 1; tol 1.06912e-08

==> Solving for nanoparticle diameter D= 10.0
--> rho= 0.7631797831142566 7.639437268410977e-07
0: |F(x)| = 768.395; step 1; tol 0.068102
1: |F(x)| = 30.3432; step 1; tol 0.00140345
2: |F(x)| = 5.95924; step 1; tol 0.0347137
3: |F(x)| = 0.0444734; step 1; tol 5.01257e-05
4: |F(x)| = 0.000112389; step 1; tol 5.74763e-06
5: |F(x)| = 2.26527e-09; step 1; tol 3.65626e-10

==> Solving for nanoparticle diameter D= 10.5
--> rho= 0.7631797831142566 6.599233144075998e-07
0: |F(x)| = 314.242; step 1; tol 0.0178885
1: |F(x)| = 16.4152; step 1; tol 0.00245587
2: |F(x)| = 0.0876236; step 1; tol 2.56444e-05

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 5.75 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 5.75 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

3: |F(x)| = 3.25965e-05; step 1; tol 1.24549e-07

==> Solving for nanoparticle diameter D= 11.0
--> rho= 0.7631797831142566 5.739622290316286e-07
0: |F(x)| = 1220.51; step 1; tol 0.0845337
1: |F(x)| = 81.7903; step 1; tol 0.00404171
2: |F(x)| = 32.4461; step 1; tol 0.141633
3: |F(x)| = 0.390322; step 1; tol 0.000130245
4: |F(x)| = 0.0027524; step 1; tol 4.47528e-05
5: |F(x)| = 2.15594e-07; step 1; tol 5.52194e-09

==> Solving for nanoparticle diameter D= 11.5
--> rho= 0.7631797831142566 5.023054010626105e-07
0: |F(x)| = 493.505; step 1; tol 0.0226383
1: |F(x)| = 26.7595; step 1; tol 0.00264615
2: |F(x)| = 0.46914; step 1; tol 0.000276626

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 6.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 6.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!

(continues on next page)

102 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

warnings.warn(warn_text)

3: |F(x)| = 7.8622e-05; step 1; tol 2.5277e-08
4: |F(x)| = 8.88924e-07; step 1; tol 0.000115049

==> Solving for nanoparticle diameter D= 12.0
--> rho= 0.7631797831142566 4.420970641441538e-07
0: |F(x)| = 1381.16; step 1; tol 0.0562768
1: |F(x)| = 84.4891; step 1; tol 0.0033679
2: |F(x)| = 16.6235; step 1; tol 0.0348407
3: |F(x)| = 0.507236; step 1; tol 0.00083795
4: |F(x)| = 0.0100824; step 1; tol 0.000355591
5: |F(x)| = 1.30405e-05; step 1; tol 1.50557e-06

==> Solving for nanoparticle diameter D= 12.5
--> rho= 0.7631797831142566 3.9113918814264206e-07
0: |F(x)| = 1243.82; step 1; tol 0.0776648
1: |F(x)| = 595.175; step 1; tol 0.20607
2: |F(x)| = 13.4545; step 1; tol 0.000459925

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 6.75 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 6.75 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

3: |F(x)| = 1.86278; step 1; tol 0.0172518
4: |F(x)| = 0.0079935; step 1; tol 1.65727e-05
5: |F(x)| = 1.46836e-05; step 1; tol 3.03692e-06

==> Solving for nanoparticle diameter D= 13.0
--> rho= 0.7631797831142566 3.4772131399230666e-07
0: |F(x)| = 1411.41; step 1; tol 0.0319697
1: |F(x)| = 1254.36; step 1; tol 0.710853
2: |F(x)| = 655.034; step 1; tol 0.454781
3: |F(x)| = 438.233; step 1; tol 0.402833
4: |F(x)| = 91.4749; step 1; tol 0.146047
5: |F(x)| = 18.8725; step 1; tol 0.0383089
6: |F(x)| = 16.4094; step 1; tol 0.680402
7: |F(x)| = 9.49042; step 1; tol 0.416652
8: |F(x)| = 3.13953; step 1; tol 0.156239
9: |F(x)| = 0.510996; step 1; tol 0.0238423
10: |F(x)| = 0.372683; step 1; tol 0.478725
11: |F(x)| = 0.0599878; step 1; tol 0.20626
12: |F(x)| = 0.00299102; step 1; tol 0.00223747
13: |F(x)| = 9.10151e-05; step 1; tol 0.000833355
14: |F(x)| = 1.37508e-06; step 1; tol 0.000205434

==> Solving for nanoparticle diameter D= 13.5
--> rho= 0.7631797831142566 3.1049889827408335e-07
0: |F(x)| = 783.486; step 1; tol 0.0173718
1: |F(x)| = 26.3862; step 1; tol 0.00102078
2: |F(x)| = 0.155281; step 1; tol 3.11693e-05

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 7.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega! (continues on next page)

4.4. Tutorial 103

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

warnings.warn(warn_text)
/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 7.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

3: |F(x)| = 1.5596e-05; step 1; tol 9.07881e-09

==> Solving for nanoparticle diameter D= 14.0
--> rho= 0.7631797831142566 2.784051482657062e-07
0: |F(x)| = 3193.67; step 1; tol 0.0924518
1: |F(x)| = 243.267; step 1; tol 0.0052219
2: |F(x)| = 195.62; step 1; tol 0.581975
3: |F(x)| = 88.044; step 1; tol 0.304825
4: |F(x)| = 39.5622; step 1; tol 0.181721
5: |F(x)| = 7.02791; step 1; tol 0.0284009
6: |F(x)| = 0.293198; step 1; tol 0.00156644
7: |F(x)| = 0.000767776; step 1; tol 6.17146e-06
8: |F(x)| = 3.03427e-05; step 1; tol 0.00140567

==> Solving for nanoparticle diameter D= 14.5
--> rho= 0.7631797831142566 2.505863223063177e-07
0: |F(x)| = 1216.2; step 1; tol 0.0244694
1: |F(x)| = 64.0155; step 1; tol 0.00249347

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/PRISM.py:225: UserWarning: Pair
→˓correlations are negative (value = -1.00e+00) for particle-particle pair!
warnings.warn(warnstr.format(val,t1,t2))

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 7.75 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 7.75 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

2: |F(x)| = 1.09273; step 1; tol 0.000262239
3: |F(x)| = 0.000607714; step 1; tol 2.78366e-07
4: |F(x)| = 2.20878e-06; step 1; tol 1.18891e-05

==> Solving for nanoparticle diameter D= 15.0
--> rho= 0.7631797831142566 2.2635369684180673e-07
0: |F(x)| = 5007.95; step 1; tol 0.132471
1: |F(x)| = 546.895; step 1; tol 0.0107333
2: |F(x)| = 355.407; step 0.481231; tol 0.380089
3: |F(x)| = 137.061; step 1; tol 0.13385
4: |F(x)| = 17.7858; step 1; tol 0.0151552
5: |F(x)| = 0.708749; step 1; tol 0.00142916
6: |F(x)| = 0.000705166; step 1; tol 8.90922e-07
7: |F(x)| = 3.59783e-07; step 1; tol 2.34283e-07

==> Solving for nanoparticle diameter D= 15.5
--> rho= 0.7631797831142566 2.0514752155781216e-07
0: |F(x)| = 1670.91; step 1; tol 0.0278465
1: |F(x)| = 378.977; step 1; tol 0.0462983
2: |F(x)| = 16.4635; step 1; tol 0.00169848
3: |F(x)| = 1.77287; step 1; tol 0.0104365

104 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 8.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 8.25 is not a multiple of domain grid spacing dr = 0.1.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

4: |F(x)| = 0.0164307; step 1; tol 7.73032e-05
5: |F(x)| = 5.5953e-06; step 1; tol 1.04371e-07

==> Solving for nanoparticle diameter D= 16.0
--> rho= 0.7631797831142566 1.8650969893581487e-07
0: |F(x)| = 4820.11; step 1; tol 0.0733899
1: |F(x)| = 558.632; step 1; tol 0.0120887
2: |F(x)| = 141.735; step 1; tol 0.0579356
3: |F(x)| = 7.23757; step 1; tol 0.00234678
4: |F(x)| = 0.216905; step 1; tol 0.000808348
5: |F(x)| = 3.50759e-05; step 1; tol 2.35353e-08
6: |F(x)| = 7.48092e-08; step 1; tol 4.09387e-06

Done!

Now that we have the D=16d solution as a guess, we can use it to solve the PRISM equations for three interaction
widths. Note also that we have changed the domain characteristics (grid spacing and length of arrays), thus we need
to use the interpolate_guess function (defined above) to convert the results using our prevous domain into the new
domain.

[5]: sys = pyPRISM.System(['particle','polymer'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.075,length=2048)

sys.diameter['polymer'] = d
sys.diameter['particle'] = D
sys.density['polymer'] = (1-phi)*eta/sys.diameter.volume['polymer']
sys.density['particle'] = phi*eta/sys.diameter.volume['particle']

sys.omega['polymer','polymer'] = pyPRISM.omega.FreelyJointedChain(length=100,l=4.0*d/
→˓3.0)
sys.omega['polymer','particle'] = pyPRISM.omega.NoIntra()
sys.omega['particle','particle'] = pyPRISM.omega.SingleSite()

sys.closure['polymer','polymer'] = pyPRISM.closure.PercusYevick()
sys.closure['polymer','particle'] = pyPRISM.closure.PercusYevick()
sys.closure['particle','particle'] = pyPRISM.closure.HyperNettedChain()

gr_results = []
guess = interpolate_guess(pyPRISM.Domain(dr=0.1,length=1024),sys.domain,sys.rank,last_
→˓guess)
for alpha in [0.25,0.5,1.0]:

print('==> Solving for alpha=',alpha)
sys.potential['polymer','polymer'] = pyPRISM.potential.HardSphere()
sys.potential['polymer','particle'] = pyPRISM.potential.Exponential(alpha=alpha,

→˓epsilon=1.0)
sys.potential['particle','particle'] = pyPRISM.potential.HardSphere()

PRISM = sys.createPRISM()
result = PRISM.solve(guess)

(continues on next page)

4.4. Tutorial 105

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

x = sys.domain.r
y = pyPRISM.calculate.pair_correlation(PRISM)['particle','particle']
gr_results.append([alpha,x,y])

print('Done!')

==> Solving for alpha= 0.25
0: |F(x)| = 5662.39; step 1; tol 0.0366116
1: |F(x)| = 506.876; step 1; tol 0.00721186

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:141: UserWarning: Diameter
→˓for site particle = 16.0 is not a multiple of domain grid spacing dr = 0.075.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:141: UserWarning: Diameter
→˓for site polymer = 1.0 is not a multiple of domain grid spacing dr = 0.075.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-particle = 16.0 is not a multiple of domain grid spacing dr = 0.075.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair particle-polymer = 8.5 is not a multiple of domain grid spacing dr = 0.075.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-particle = 8.5 is not a multiple of domain grid spacing dr = 0.075.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

/home/tbm/software/pyPRISM/dev/src/pyPRISM/core/System.py:150: UserWarning: Sigma for
→˓pair polymer-polymer = 1.0 is not a multiple of domain grid spacing dr = 0.075.
→˓Rounding will occur in closures, potentials, and omega!
warnings.warn(warn_text)

2: |F(x)| = 484.693; step 0.0482191; tol 0.822948
3: |F(x)| = 386.994; step 1; tol 0.60952
4: |F(x)| = 181.28; step 1; tol 0.334363
5: |F(x)| = 57.4303; step 1; tol 0.100619
6: |F(x)| = 57.4266; step 6.28341e-05; tol 0.899883
7: |F(x)| = 55.3488; step 1; tol 0.83605
8: |F(x)| = 55.3217; step 1; tol 0.899118
9: |F(x)| = 54.9051; step 0.0341534; tol 0.886497
10: |F(x)| = 54.9045; step 1; tol 0.899981
11: |F(x)| = 54.2824; step 0.0629851; tol 0.879722
12: |F(x)| = 54.0923; step 0.00546448; tol 0.893705
13: |F(x)| = 53.8822; step 0.00653873; tol 0.893024
14: |F(x)| = 53.6781; step 0.0063891; tol 0.893192
15: |F(x)| = 53.4702; step 0.00660002; tol 0.893042
16: |F(x)| = 53.2445; step 0.00737255; tol 0.89242
17: |F(x)| = 53.028; step 0.00714387; tol 0.892695
18: |F(x)| = 52.7721; step 0.00869284; tol 0.891335
19: |F(x)| = 52.4261; step 0.0123779; tol 0.888237
20: |F(x)| = 51.9933; step 0.0181704; tol 0.885204
21: |F(x)| = 48.7829; step 0.223636; tol 0.792286
22: |F(x)| = 48.225; step 0.0311114; tol 0.879531

(continues on next page)

106 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

23: |F(x)| = 46.8732; step 0.145401; tol 0.850254
24: |F(x)| = 46.2001; step 0.0447723; tol 0.874337
25: |F(x)| = 45.4206; step 0.0593008; tol 0.869887
26: |F(x)| = 44.3289; step 0.101496; tol 0.857255
27: |F(x)| = 42.7629; step 0.169827; tol 0.837535
28: |F(x)| = 39.5406; step 0.18508; tol 0.769475
29: |F(x)| = 39.1283; step 0.0207502; tol 0.881328
30: |F(x)| = 37.6503; step 0.244255; tol 0.833291
31: |F(x)| = 37.076; step 0.0283116; tol 0.872756
32: |F(x)| = 34.9091; step 0.421424; tol 0.797871
33: |F(x)| = 33.7516; step 0.119877; tol 0.841309
34: |F(x)| = 32.3594; step 0.20191; tol 0.827282
35: |F(x)| = 29.8944; step 0.216001; tol 0.768105
36: |F(x)| = 27.571; step 0.256759; tol 0.765544
37: |F(x)| = 27.2736; step 0.0158169; tol 0.880689
38: |F(x)| = 26.9287; step 0.0191221; tol 0.877379
39: |F(x)| = 26.5379; step 0.0223223; tol 0.874069
40: |F(x)| = 26.0869; step 0.0268403; tol 0.86967
41: |F(x)| = 25.2816; step 0.0612396; tol 0.845287
42: |F(x)| = 23.7826; step 0.171257; tol 0.796441
43: |F(x)| = 21.8223; step 0.280001; tol 0.757744
44: |F(x)| = 21.2037; step 0.0651854; tol 0.849699
45: |F(x)| = 19.4407; step 1; tol 0.756562
46: |F(x)| = 19.0303; step 0.058792; tol 0.862404
47: |F(x)| = 17.6025; step 0.413611; tol 0.770011
48: |F(x)| = 17.4875; step 0.0129598; tol 0.888285
49: |F(x)| = 15.9301; step 1; tol 0.74683
50: |F(x)| = 15.7945; step 0.0136197; tol 0.884747
51: |F(x)| = 15.197; step 0.239605; tol 0.833196
52: |F(x)| = 14.2615; step 0.382576; tol 0.792602
53: |F(x)| = 13.8855; step 0.123451; tol 0.853175
54: |F(x)| = 13.2629; step 0.0746045; tol 0.821092
55: |F(x)| = 13.0066; step 0.0465958; tol 0.865558
56: |F(x)| = 11.4684; step 0.356923; tol 0.699713
57: |F(x)| = 9.90548; step 1; tol 0.67141
58: |F(x)| = 8.39992; step 0.286561; tol 0.647206
59: |F(x)| = 7.99417; step 0.0713259; tol 0.815153
60: |F(x)| = 6.71961; step 1; tol 0.635892
61: |F(x)| = 6.56528; step 0.0403031; tol 0.859135
62: |F(x)| = 5.78488; step 1; tol 0.698756
63: |F(x)| = 5.6753; step 0.0449467; tol 0.866227
64: |F(x)| = 5.38428; step 0.259107; tol 0.810063
65: |F(x)| = 4.99153; step 0.282899; tol 0.773492
66: |F(x)| = 4.54696; step 0.293414; tol 0.746822
67: |F(x)| = 4.35788; step 0.144591; tol 0.826703
68: |F(x)| = 115.882; step 1; tol 0.9999
69: |F(x)| = 111.255; step 1; tol 0.89982
70: |F(x)| = 5.38899; step 1; tol 0.728708
71: |F(x)| = 4.28912; step 1; tol 0.570117
72: |F(x)| = 4.25354; step 0.0107603; tol 0.885131
73: |F(x)| = 3.74899; step 1; tol 0.705112
74: |F(x)| = 3.64651; step 0.0369959; tol 0.851471
75: |F(x)| = 3.49717; step 0.308434; tol 0.82779
76: |F(x)| = 3.47186; step 0.0175346; tol 0.887022
77: |F(x)| = 3.10644; step 0.452557; tol 0.720516
78: |F(x)| = 2.70975; step 0.180118; tol 0.684819
79: |F(x)| = 2.69391; step 1; tol 0.889504

(continues on next page)

4.4. Tutorial 107

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

80: |F(x)| = 2.09303; step 1; tol 0.712095
81: |F(x)| = 1.57302; step 1; tol 0.508347
82: |F(x)| = 1.29932; step 1; tol 0.614057
83: |F(x)| = 0.734189; step 1; tol 0.33936
84: |F(x)| = 0.154052; step 1; tol 0.103648
85: |F(x)| = 0.0124538; step 1; tol 0.00588186
86: |F(x)| = 0.000443185; step 1; tol 0.00113974
87: |F(x)| = 2.86368e-05; step 1; tol 0.0037577
==> Solving for alpha= 0.5
0: |F(x)| = 6746.45; step 1; tol 0.183588
1: |F(x)| = 899.268; step 1; tol 0.0159908
2: |F(x)| = 883.065; step 0.0182703; tol 0.86786
3: |F(x)| = 866.116; step 0.0196403; tol 0.865783
4: |F(x)| = 848.79; step 0.0205053; tol 0.864353
5: |F(x)| = 830.828; step 0.0218293; tol 0.862312
6: |F(x)| = 811.965; step 0.0236937; tol 0.859597
7: |F(x)| = 791.936; step 0.0261192; tol 0.856148
8: |F(x)| = 770.518; step 0.029187; tol 0.851977
9: |F(x)| = 747.724; step 0.0324992; tol 0.847537
10: |F(x)| = 722.348; step 0.0386579; tol 0.839951
11: |F(x)| = 685.311; step 0.0675702; tol 0.810074
12: |F(x)| = 622.59; step 0.176722; tol 0.7428
13: |F(x)| = 545.469; step 0.356716; tol 0.690842
14: |F(x)| = 419.857; step 0.463427; tol 0.533219
15: |F(x)| = 364.86; step 1; tol 0.679659
16: |F(x)| = 162.208; step 1; tol 0.415743
17: |F(x)| = 118.493; step 1; tol 0.480267
18: |F(x)| = 43.0135; step 1; tol 0.207591
19: |F(x)| = 42.4792; step 0.0127218; tol 0.87778
20: |F(x)| = 34.6238; step 1; tol 0.693449
21: |F(x)| = 18.1081; step 1; tol 0.432784
22: |F(x)| = 18.096; step 0.00148958; tol 0.898802
23: |F(x)| = 16.7957; step 1; tol 0.77531
24: |F(x)| = 16.7661; step 0.00236339; tol 0.896826
25: |F(x)| = 14.6038; step 1; tol 0.723867
26: |F(x)| = 14.5857; step 0.00234181; tol 0.89777
27: |F(x)| = 14.5659; step 0.00268224; tol 0.897558
28: |F(x)| = 14.5451; step 0.00291978; tol 0.897434
29: |F(x)| = 14.5226; step 0.0033461; tol 0.897211
30: |F(x)| = 14.4924; step 0.00501023; tol 0.896268
31: |F(x)| = 14.4244; step 0.0150729; tol 0.891573
32: |F(x)| = 14.3701; step 0.0156674; tol 0.893232
33: |F(x)| = 14.3295; step 0.00941524; tol 0.89492
34: |F(x)| = 14.2789; step 0.0137285; tol 0.893656
35: |F(x)| = 14.2088; step 0.0237725; tol 0.891192
36: |F(x)| = 14.1776; step 0.00347429; tol 0.896049
37: |F(x)| = 14.1468; step 0.00338865; tol 0.896086
38: |F(x)| = 14.1154; step 0.00345969; tol 0.896019
39: |F(x)| = 14.0828; step 0.00362123; tol 0.895848
40: |F(x)| = 14.0497; step 0.0037036; tol 0.895763
41: |F(x)| = 14.0159; step 0.0037831; tol 0.895676
42: |F(x)| = 13.9763; step 0.0045277; tol 0.894933
43: |F(x)| = 13.936; step 0.0046499; tol 0.894809
44: |F(x)| = 13.8757; step 0.00739434; tol 0.892228
45: |F(x)| = 13.6452; step 0.038678; tol 0.87035
46: |F(x)| = 13.3834; step 0.0828193; tol 0.865797
47: |F(x)| = 13.0434; step 0.10834; tol 0.854847

(continues on next page)

108 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

48: |F(x)| = 12.5624; step 0.12922; tol 0.834849
49: |F(x)| = 12.3856; step 0.0349655; tol 0.874842
50: |F(x)| = 11.98; step 0.110287; tol 0.842021
51: |F(x)| = 11.4691; step 0.178552; tol 0.824871
52: |F(x)| = 11.1469; step 0.103842; tol 0.850144
53: |F(x)| = 10.8327; step 0.113741; tol 0.849987
54: |F(x)| = 10.5114; step 0.143656; tol 0.847405
55: |F(x)| = 10.4234; step 0.0233655; tol 0.884981
56: |F(x)| = 10.0591; step 0.27104; tol 0.83819
57: |F(x)| = 9.93552; step 0.0421546; tol 0.878025
58: |F(x)| = 9.8003; step 0.0503998; tol 0.87567
59: |F(x)| = 9.65847; step 0.0582761; tol 0.874138
60: |F(x)| = 9.51607; step 0.0717795; tol 0.873658
61: |F(x)| = 9.30839; step 0.126937; tol 0.861146
62: |F(x)| = 9.14466; step 0.088775; tol 0.868617
63: |F(x)| = 9.07084; step 0.0175895; tol 0.885528
64: |F(x)| = 8.88409; step 0.116758; tol 0.863323
65: |F(x)| = 8.82598; step 0.0183666; tol 0.888265
66: |F(x)| = 8.64064; step 0.138253; tol 0.862598
67: |F(x)| = 8.56059; step 0.0184698; tol 0.8834
68: |F(x)| = 8.34404; step 0.179322; tol 0.855043
69: |F(x)| = 8.1986; step 0.0798705; tol 0.868898
70: |F(x)| = 8.01219; step 0.129745; tol 0.85954
71: |F(x)| = 7.77286; step 0.151839; tol 0.847035
72: |F(x)| = 7.49663; step 0.211838; tol 0.83717
73: |F(x)| = 7.33552; step 0.143322; tol 0.861731
74: |F(x)| = 7.11758; step 0.202731; tol 0.847318
75: |F(x)| = 6.92584; step 0.0841314; tol 0.852163
76: |F(x)| = 6.66849; step 0.148919; tol 0.834358
77: |F(x)| = 6.49641; step 0.0936889; tol 0.854148
78: |F(x)| = 6.27982; step 0.173879; tol 0.840989
79: |F(x)| = 6.21005; step 0.104383; tol 0.880113
80: |F(x)| = 5.95206; step 0.311442; tol 0.826774
81: |F(x)| = 5.84771; step 0.0658969; tol 0.86872
82: |F(x)| = 5.52592; step 0.386533; tol 0.803673
83: |F(x)| = 5.4901; step 0.0306027; tol 0.888372
84: |F(x)| = 5.32078; step 0.0924585; tol 0.84534
85: |F(x)| = 5.11388; step 1; tol 0.831368
86: |F(x)| = 4.91527; step 0.233652; tol 0.831451
87: |F(x)| = 3.94431; step 1; tol 0.62218
88: |F(x)| = 2.71733; step 1; tol 0.427155
89: |F(x)| = 1.00216; step 1; tol 0.164215
90: |F(x)| = 0.163451; step 1; tol 0.0239411
91: |F(x)| = 0.00369448; step 1; tol 0.000459807
92: |F(x)| = 1.58342e-05; step 1; tol 1.65322e-05
==> Solving for alpha= 1.0
0: |F(x)| = 8084.63; step 1; tol 0.342037
1: |F(x)| = 2811.99; step 1; tol 0.10888
2: |F(x)| = 2679.33; step 0.0540234; tol 0.817087
3: |F(x)| = 2457.27; step 0.145064; tol 0.757
4: |F(x)| = 2229.62; step 0.293304; tol 0.740964
5: |F(x)| = 1401.84; step 1; tol 0.494125
6: |F(x)| = 635.165; step 1; tol 0.219744
7: |F(x)| = 561.901; step 0.120546; tol 0.704352
8: |F(x)| = 493.256; step 1; tol 0.693534
9: |F(x)| = 371.347; step 1; tol 0.510102
10: |F(x)| = 332.655; step 0.143602; tol 0.722223

(continues on next page)

4.4. Tutorial 109

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

11: |F(x)| = 237.016; step 1; tol 0.469445
12: |F(x)| = 233.74; step 0.0196123; tol 0.875297
13: |F(x)| = 219.77; step 0.20992; tol 0.795634
14: |F(x)| = 212.642; step 0.0406852; tol 0.842559
15: |F(x)| = 202.983; step 0.0678949; tol 0.820095
16: |F(x)| = 186.052; step 0.20501; tol 0.756122
17: |F(x)| = 178.744; step 0.0933333; tol 0.830689
18: |F(x)| = 170.871; step 0.167445; tol 0.822458
19: |F(x)| = 145.236; step 1; tol 0.650218
20: |F(x)| = 95.3081; step 1; tol 0.387571
21: |F(x)| = 43.572; step 1; tol 0.188104
22: |F(x)| = 36.1231; step 0.269139; tol 0.618582
23: |F(x)| = 21.8998; step 1; tol 0.34438
24: |F(x)| = 19.9895; step 0.139459; tol 0.749839
25: |F(x)| = 19.9724; step 0.00474796; tol 0.898454
26: |F(x)| = 17.4563; step 1; tol 0.726497
27: |F(x)| = 14.1098; step 1; tol 0.588002
28: |F(x)| = 7.53609; step 1; tol 0.311172
29: |F(x)| = 1.31187; step 1; tol 0.027273
30: |F(x)| = 0.0283652; step 1; tol 0.000420758
31: |F(x)| = 9.136e-05; step 1; tol 9.33644e-06
32: |F(x)| = 2.04046e-07; step 1; tol 4.48937e-06
Done!

Here we reproduce Figure 1 from Reference 1.

[6]: %%opts Overlay [legend_position='top_right']

extents = (16,0.0,24,4.0)

gr_plots = []
for alpha,x,y in gr_results:

label = 'alpha={} (pyPRISM)'.format(alpha)
style = {'line_dash':ls[alpha],'color':colors[alpha]}
c1 = hv.Curve((x,y),label=label,extents=extents)(style=style)
gr_plots.append(c1)

for alpha,x,y in gr_compare:
label = 'alpha={} (Ref 1)'.format(alpha)
style = {'marker':markers[alpha],'color':colors[alpha]}
c1 = hv.Scatter((x,y),label=label,extents=extents)(style=style)
gr_plots.append(c1)

hv.Overlay(gr_plots).redim.label(x='r',y='g(r)')

[6]: :Overlay
.Curve.Alpha_equals_0_full_stop_25_left_parenthesis_pyPRISM_right_parenthesis :

→˓Curve [x] (y)
.Curve.Alpha_equals_0_full_stop_5_left_parenthesis_pyPRISM_right_parenthesis :

→˓Curve [x] (y)
.Curve.Alpha_equals_1_full_stop_0_left_parenthesis_pyPRISM_right_parenthesis :

→˓Curve [x] (y)
.Scatter.Alpha_equals_1_full_stop_0_left_parenthesis_Ref_1_right_parenthesis :

→˓Scatter [x] (y)
.Scatter.Alpha_equals_0_full_stop_5_left_parenthesis_Ref_1_right_parenthesis :

→˓Scatter [x] (y)

(continues on next page)

110 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

.Scatter.Alpha_equals_0_full_stop_25_left_parenthesis_Ref_1_right_parenthesis :
→˓Scatter [x] (y)

Polymer Grafted Particle Nanocomposite

In this example, we use pyPRISM to study a polymer nanocomposite system in which polymer chains of varying
length 𝑁𝑚𝑎𝑡𝑟𝑖𝑥 = 10, 60 are mixed with a nanoparticle permanently grafted with polymer chains. The grafted chains
are of length 𝑁𝑔𝑟𝑎𝑓𝑡 = 20 and are of either linear or comb polymer architecture with side chain length 𝑁𝑠𝑐 = 3.
All interactions in this system are modeled as athermal (hard-sphere). We plot the particle-particle potential of mean
force as a function of the length of the matrix chains and the grafted chain architecture. The details of this system are
described in Ref. 5.

As always, we define the aesthetics first

[7]: %opts Curve Scatter [width=500,height=400] Layout [shared_axes=False] Scatter
→˓(size=10,alpha=0.5)
%opts Curve Scatter [fontsize={'xlabel':14,'xlabel':14,'ylabel':14,'ticks':12}]
%opts Overlay [legend_position='bottom_left']
%opts Layout [shared_axes=False]

colors = {}
colors['linear',10] = 'blue'
colors['linear',60] = 'red'
colors['comb',10] = 'green'
colors['comb',60] = 'magenta'

ls = {}
ls['linear',10] = 'solid'
ls['linear',60] = 'dashed'
ls['comb',10] = 'dotted'
ls['comb',60] = 'dashdot'

markers = {}
markers['linear',10] = 'o'
markers['linear',60] = '^'
markers['comb',10] = 'd'
markers['comb',60] = 's'

Next, we load the data from the literature.

[8]: PMF_compare = []
for arch in ['linear','comb']:

for Nmatrix in [10,60]:
fname = '../data/GraftedComposite-Gr-{}-Nmatrix{}-PP.dat'.format(arch,Nmatrix)
x,y = np.loadtxt(fname).T
y = -np.log(y)
PMF_compare.append([arch,Nmatrix,x,y])

/home/tbm/software/anaconda3/4.4.0/envs/pyPRISM_py3_dev/lib/python3.5/site-packages/
→˓ipykernel_launcher.py:6: RuntimeWarning: divide by zero encountered in log

4.4. Tutorial 111

pyPRISM Documentation, Release v1.0.4

Finally, we conduct the calculation. Unlike the bare-composite case, we can directly solve for the results but we still
use loops to quickly scan a small parameter space and gather the results.

Note that this calculation is considerably more complicated than the previous if only for the fact that we have three
components for the first time. This results in a significantly longer script for the calculation.

[9]: import pyPRISM
from pyPRISM.calculate.pair_correlation import pair_correlation
from pyPRISM.calculate.pmf import pmf
import numpy as np

D = 5.0 #grafted nanoparticle diameter
d = 1.0 #polymer segement diameter
phi = 0.001 #grafted particle volume fraction
eta = 0.35 #total occupied volume fraction
vd = 4.0/3.0 * np.pi * (d/2.0)**(3) #volume of one polymer segement
vD = 4.0/3.0 * np.pi * (D/2.0)**(3) #volume of one nanoparticle

sys = pyPRISM.System(['particle','graft','matrix'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)

sys.diameter['particle'] = D
sys.diameter['graft'] = d
sys.diameter['matrix'] = d

sys.omega['particle','matrix'] = pyPRISM.omega.InterMolecular()
sys.omega['graft','matrix'] = pyPRISM.omega.InterMolecular()
sys.omega['particle','particle'] = pyPRISM.omega.SingleSite()

sys.closure[sys.types,sys.types] = pyPRISM.closure.PercusYevick()
sys.closure['particle','particle'] = pyPRISM.closure.HyperNettedChain()

sys.potential[sys.types,sys.types] = pyPRISM.potential.HardSphere()
sys.potential['particle',sys.types] = pyPRISM.potential.HardSphere()
sys.potential['particle','particle'] = pyPRISM.potential.HardSphere()

guess = np.zeros((sys.domain.length,sys.rank,sys.rank))
PMF_results = []
for Nmatrix in [60,10]:

sys.omega['matrix','matrix'] = pyPRISM.omega.FromFile('../data/GraftedComposite-
→˓Omega-matrix-N{}.dat'.format(Nmatrix))

sys.omega['graft','graft'] = pyPRISM.omega.FromFile('../data/GraftedComposite-
→˓Omega-linear-GG.dat')

sys.omega['graft','particle'] = pyPRISM.omega.FromFile('../data/GraftedComposite-
→˓Omega-linear-GP.dat')

numGraftBeads = 500
vPGP = vD + numGraftBeads*vd
sys.density['matrix'] = (1-phi)*eta/vd
sys.density['particle'] = phi*eta/vPGP
sys.density['graft'] = numGraftBeads * phi*eta/vPGP
print('--> rho=',sys.density['graft'],sys.density['particle'],sys.density['matrix

→˓'])
PRISM = sys.createPRISM()
PRISM.solve(guess)
guess = np.copy(PRISM.x)
PMF_results.append(['linear',Nmatrix,sys.domain.r,pmf(PRISM)['particle','particle

→˓']])

(continues on next page)

112 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

numGraftBeads = 1250
vPGP = vD + numGraftBeads*vd
sys.density['matrix'] = (1-phi)*eta/vd
sys.density['particle'] = phi*eta/vPGP
sys.density['graft'] = numGraftBeads * phi*eta/vPGP
print('--> rho=',sys.density['graft'],sys.density['particle'],sys.density['matrix

→˓'])
sys.omega['matrix','matrix'] = pyPRISM.omega.FromFile('../data/GraftedComposite-

→˓Omega-matrix-N{}.dat'.format(Nmatrix))
sys.omega['graft','graft'] = pyPRISM.omega.FromFile('../data/GraftedComposite-

→˓Omega-comb-GG.dat')
sys.omega['graft','particle'] = pyPRISM.omega.FromFile('../data/GraftedComposite-

→˓Omega-comb-GP.dat')
PRISM = sys.createPRISM()
result = PRISM.solve(guess)
PMF_results.append(['comb',Nmatrix,sys.domain.r,pmf(PRISM)['particle','particle

→˓']])

print('Done!')

--> rho= 0.0005347606087887683 1.0695212175775368e-06 0.6677823102249745
0: |F(x)| = 125.67; step 0.0222735; tol 0.853672
1: |F(x)| = 110.033; step 1; tol 0.689955
2: |F(x)| = 98.7161; step 0.360292; tol 0.724395
3: |F(x)| = 96.916; step 0.0346837; tol 0.867475
4: |F(x)| = 77.7223; step 1; tol 0.677262
5: |F(x)| = 52.3436; step 1; tol 0.412816
6: |F(x)| = 52.2497; step 0.00201374; tol 0.896772
7: |F(x)| = 45.2768; step 1; tol 0.723781
8: |F(x)| = 42.7455; step 0.0847881; tol 0.80218
9: |F(x)| = 37.6435; step 0.200722; tol 0.697978
10: |F(x)| = 32.0038; step 1; tol 0.650526
11: |F(x)| = 25.3211; step 0.309525; tol 0.563386
12: |F(x)| = 21.2678; step 0.353001; tol 0.634926
13: |F(x)| = 17.046; step 0.420115; tol 0.578152
14: |F(x)| = 10.0361; step 1; tol 0.311978
15: |F(x)| = 9.52045; step 0.0566309; tol 0.809896
16: |F(x)| = 6.99251; step 1; tol 0.590338
17: |F(x)| = 3.87908; step 1; tol 0.313649
18: |F(x)| = 3.59957; step 0.091973; tol 0.774974
19: |F(x)| = 3.16073; step 0.265407; tol 0.693929
20: |F(x)| = 2.73033; step 1; tol 0.67158
21: |F(x)| = 1.39749; step 1; tol 0.405918
22: |F(x)| = 0.815644; step 1; tol 0.306583
23: |F(x)| = 0.191751; step 1; tol 0.0497412
24: |F(x)| = 0.138158; step 1; tol 0.467215
25: |F(x)| = 0.0047945; step 1; tol 0.196461
26: |F(x)| = 0.000179072; step 1; tol 0.00125548
27: |F(x)| = 2.33742e-06; step 1; tol 0.000153342
--> rho= 0.0006076825099872368 4.861460079897895e-07 0.6677823102249745
0: |F(x)| = 47.2842; step 1; tol 0.255559
1: |F(x)| = 6.39546; step 1; tol 0.0164647
2: |F(x)| = 0.600451; step 1; tol 0.00793331
3: |F(x)| = 0.0275196; step 1; tol 0.00189048
4: |F(x)| = 0.00369618; step 1; tol 0.0162354
5: |F(x)| = 3.65937e-06; step 1; tol 8.82164e-07

(continues on next page)

4.4. Tutorial 113

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

--> rho= 0.0005347606087887683 1.0695212175775368e-06 0.6677823102249745
0: |F(x)| = 24.4749; step 1; tol 0.00231931
1: |F(x)| = 0.34516; step 1; tol 0.000178995
2: |F(x)| = 0.202216; step 1; tol 0.308911
3: |F(x)| = 0.0112913; step 1; tol 0.00280606
4: |F(x)| = 5.59149e-05; step 1; tol 2.20705e-05
--> rho= 0.0006076825099872368 4.861460079897895e-07 0.6677823102249745
0: |F(x)| = 39.6577; step 1; tol 0.0980329
1: |F(x)| = 1.07302; step 1; tol 0.000658876
2: |F(x)| = 0.609651; step 1; tol 0.290528
3: |F(x)| = 0.0416829; step 1; tol 0.00420723
4: |F(x)| = 0.0108212; step 1; tol 0.0606569
5: |F(x)| = 0.00213452; step 1; tol 0.0350178
6: |F(x)| = 2.32349e-05; step 1; tol 0.000106641
Done!

Finally, plotting the results

[10]: %%opts Overlay [legend_position='top_right']
from math import sqrt

extents = (10,-0.2,40,0.2)
gr_plots = []
for arch,Nmatrix,x,y in PMF_results:

key = (arch,Nmatrix)
label = 'alpha={} (pyPRISM)'.format(key)
style = {'line_dash':ls[key],'color':colors[key]}
c1 = hv.Curve((x,y),label=label,extents=extents)(style=style)
gr_plots.append(c1)

step = 10
for arch,Nmatrix,x,y in PMF_compare:

x = x[::step]
y = y[::step]
key = (arch,Nmatrix)
label = 'alpha={} (Ref 1)'.format(key)
style = {'marker':markers[key],'color':colors[key]}
c1 = hv.Scatter((x,y),label=label,extents=extents)(style=style)
gr_plots.append(c1)

hv.Overlay(gr_plots).redim.label(x='r',y='W(r)')

[10]: :Overlay
.Curve.Alpha_equals_left_parenthesis_apostrophe_linear_apostrophe_comma_60_right_

→˓parenthesis_left_parenthesis_pyPRISM_right_parenthesis :Curve [x] (y)
.Curve.Alpha_equals_left_parenthesis_apostrophe_comb_apostrophe_comma_60_right_

→˓parenthesis_left_parenthesis_pyPRISM_right_parenthesis :Curve [x] (y)
.Curve.Alpha_equals_left_parenthesis_apostrophe_linear_apostrophe_comma_10_right_

→˓parenthesis_left_parenthesis_pyPRISM_right_parenthesis :Curve [x] (y)
.Curve.Alpha_equals_left_parenthesis_apostrophe_comb_apostrophe_comma_10_right_

→˓parenthesis_left_parenthesis_pyPRISM_right_parenthesis :Curve [x] (y)
.Scatter.Alpha_equals_left_parenthesis_apostrophe_linear_apostrophe_comma_10_right_

→˓parenthesis_left_parenthesis_Ref_1_right_parenthesis :Scatter [x] (y)
.Scatter.Alpha_equals_left_parenthesis_apostrophe_linear_apostrophe_comma_60_right_

→˓parenthesis_left_parenthesis_Ref_1_right_parenthesis :Scatter [x] (y)
.Scatter.Alpha_equals_left_parenthesis_apostrophe_comb_apostrophe_comma_10_right_

→˓parenthesis_left_parenthesis_Ref_1_right_parenthesis :Scatter [x] (y)(continues on next page)

114 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

.Scatter.Alpha_equals_left_parenthesis_apostrophe_comb_apostrophe_comma_60_right_
→˓parenthesis_left_parenthesis_Ref_1_right_parenthesis :Scatter [x] (y)

Summary

This notebook has covered two examples of nanocomposite systems which are significantly more complex than exam-
ples in previous notebooks. We also discuss the strategies we use to converge the PRISM equations for these systems,
as we cannot directly solve for the answer.

NB0.Introduction · NB1.PythonBasics · NB2.Theory.General · NB3.Theory.PRISM · NB4.pyPRISM.Overview
· NB5.CaseStudies.PolymerMelts · NB6.CaseStudies.Nanocomposites · NB7.CaseStudies.Copolymers ·
NB8.pyPRISM.Internals · NB9.pyPRISM.Advanced

[]:

Case Studies: Copolymers

There are many challenges to studying copolymer systems with PRISM with the primary challenge being that PRISM
cannot describe the phase-separated state, which is often of primary interest. Furthermore, due to the vast array of chain
architectures, compositions, sequences, and chemistries that can be synthetically incorporated into block copolymers,
analytical �̂�(𝑘) are unlikely to be available for every system of interest. Despite this, many authors have used PRISM
to study the disorded (mixed) state and to probe details about the spinodal phase transition.

Concepts

• Multicomponent PRISM

• Heterogeneous interactions

• Complex Molecular Structure

• Simulation derived �̂�(𝑘)

Tools

• pyPRISM.calculate.structure_factor

References

1. Ivan Lyubimov, Daniel J. Beltran-Villegas, and Arthi Jayaraman; PRISM Theory Study of Amphiphilic Block
Copolymer Solutions with Varying Copolymer Sequence and Composition, Macromolecules, 2017, 50 (18),
7419–7431 DOI: 10.1021/acs.macromol.7b01419

4.4. Tutorial 115

pyPRISM Documentation, Release v1.0.4

Notebook Setup

To begin, please run Kernel-> Restart & Clear Output from the menu at the top of the notebook. It is a
good idea to run this before starting any notebook so that the notebook is fresh for the user. Next, run the cell below
(via the top menu-bar or <Shift-Enter>. If the cell throws an import error, there is likely something wrong with
your environment.

If successful, you should see a set of logos appear below the cell. Which logos appear depend on what is inside the
hv.extension() command at the bottom of the cell. If no logos appear and the cell throws an error, there is likely
something wrong with your environment.

Troubleshooting:

• Did you activate the correct conda environment before starting the jupyter notebook?

• If not using anaconda, did you install all dependencies before starting the jupyter notebook?

• Is pyPRISM installed in your current environment on your PYTHONPATH?

Holoviews + Bokeh Logos:

[1]: import pyPRISM
import numpy as np
import holoviews as hv
hv.extension('bokeh')

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_load.v0+json

<IPython.core.display.HTML object>

Amphiphilic Block Copolymer Solution

In this example, we use pyPRISM to predict the structure of amphiphilic block copolymer solutions. In this case, we
show the impact of block copolymer sequence on self-assembly, in which the A block is hydrophilic and the B block is
hydrophobic. The block sequences shown are A-B diblock (case 1), A-B-A triblock (case 2), and B-A-B triblock (case
2i), in which the fraction of A-block (f_A) is always 0.5. The system and comparison data are taken from reference 1.

Starting with the aesthetic definitions

[2]: %opts Curve Scatter [width=500,height=400] Layout [shared_axes=False] Scatter
→˓(size=10,alpha=0.5)
%opts Curve Scatter [fontsize={'xlabel':14,'legend':14,'ylabel':14,'ticks':14}]
%opts Overlay [legend_position='bottom_left']
%opts Layout [shared_axes=False]

colors = {}
colors['1'] = 'blue'
colors['2'] = 'red'
colors['2i'] = 'orange'

(continues on next page)

116 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

ls = {}
ls['1'] = 'solid'
ls['2'] = 'solid'
ls['2i'] = 'solid'

lsc = {}
lsc['1'] = 'dotted'
lsc['2'] = 'dotted'
lsc['2i'] = 'dotted'

markers = {}
markers['1'] = 'o'
markers['2'] = '^'
markers['2i'] = 'd'

Next we’ll load in the data extracted from Ref. 1 that we’ll be comparing against.

[3]: skAA_compare = {}
skBB_compare = {}
for case in ['1','2','2i']:

fname = '../data/BCPSolution-Sk-AA-Case{}.dat'.format(case)
dataAA = np.loadtxt(fname)
skAA_compare[case] = dataAA[:,1]
fname = '../data/BCPSolution-Sk-BB-Case{}.dat'.format(case)
dataBB = np.loadtxt(fname)
skBB_compare[case] = dataBB[:,1]

skAA_compare['k'] = dataAA[:,0]
skBB_compare['k'] = dataBB[:,0]

Next, we’ll use typyPRISM to calculate structural data for the three block copolymer sequences. We chose to solve in
the order of case 2, case 2i, then case 1 because case 2 more easily converged to a solution from a naive initial guess.

[4]:
d = 1.0 #diameter of beads
vd = 4.0/3.0 * np.pi * (d/2.0)**(3) #volume of beads
f_A = 0.5 #volume fraction of A block
eta = 0.1 #total occupied volume fraction
site_density = eta/vd
epsilon = 1.0 #WCA epsilon for A-A and A-B interactions
epsilon_BB = 0.25 #LJ epsilon for B-B interactions

sys = pyPRISM.System(['A','B'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.1,length=1024)

sys.density['A'] = f_A*site_density
sys.density['B'] = (1.0-f_A)*site_density
sys.diameter['A'] = d
sys.diameter['B'] = d
print('--> rho=',sys.density['A'],sys.density['B'])

sys.closure['A','A'] = pyPRISM.closure.PercusYevick()
sys.closure['A','B'] = pyPRISM.closure.PercusYevick()

(continues on next page)

4.4. Tutorial 117

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

sys.closure['B','B'] = pyPRISM.closure.PercusYevick()

sys.potential['A','A'] = pyPRISM.potential.WeeksChandlerAndersen(epsilon)
sys.potential['A','B'] = pyPRISM.potential.WeeksChandlerAndersen(epsilon)
sys.potential['B','B'] = pyPRISM.potential.LennardJones(epsilon_BB)

skAA_results = {}
skBB_results = {}
guess = np.zeros(sys.rank*sys.rank*sys.domain.length)
for case in ['2','2i','1']:

print('==> Solving for case {}'.format(case))

fname = '../data/BCPSolution-Omega-AA-Case{}.dat'.format(case)
print("Using omega "+fname)
sys.omega['A','A'] = pyPRISM.omega.FromFile(fname)
fname = '../data/BCPSolution-Omega-AB-Case{}.dat'.format(case)
print("Using omega "+fname)
sys.omega['A','B'] = pyPRISM.omega.FromFile(fname)
fname = '../data/BCPSolution-Omega-BB-Case{}.dat'.format(case)
print("Using omega "+fname)
sys.omega['B','B'] = pyPRISM.omega.FromFile(fname)

PRISM = sys.createPRISM()
result = PRISM.solve(guess)
guess = np.copy(PRISM.x)

SAA = pyPRISM.calculate.structure_factor(PRISM)['A','A']
SBB = pyPRISM.calculate.structure_factor(PRISM)['B','B']
skAA_results[case] = SAA
skBB_results[case] = SBB

skAA_results['k'] = sys.domain.k
skBB_results['k'] = sys.domain.k

print('Done!')

--> rho= 0.09549296585513722 0.09549296585513722
==> Solving for case 2
Using omega ../data/BCPSolution-Omega-AA-Case2.dat
Using omega ../data/BCPSolution-Omega-AB-Case2.dat
Using omega ../data/BCPSolution-Omega-BB-Case2.dat
0: |F(x)| = 6.1997; step 1; tol 0.220434
1: |F(x)| = 1.41862; step 1; tol 0.0471231
2: |F(x)| = 0.0989687; step 1; tol 0.00438031
3: |F(x)| = 0.000851413; step 1; tol 6.66082e-05
4: |F(x)| = 5.3716e-08; step 1; tol 3.58236e-09
==> Solving for case 2i
Using omega ../data/BCPSolution-Omega-AA-Case2i.dat
Using omega ../data/BCPSolution-Omega-AB-Case2i.dat
Using omega ../data/BCPSolution-Omega-BB-Case2i.dat
0: |F(x)| = 0.0578709; step 1; tol 0.000604868
1: |F(x)| = 0.000226768; step 1; tol 1.38193e-05
2: |F(x)| = 3.28947e-09; step 1; tol 1.89379e-10
==> Solving for case 1
Using omega ../data/BCPSolution-Omega-AA-Case1.dat
Using omega ../data/BCPSolution-Omega-AB-Case1.dat
Using omega ../data/BCPSolution-Omega-BB-Case1.dat

(continues on next page)

118 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

0: |F(x)| = 0.109135; step 1; tol 0.00308876
1: |F(x)| = 0.000506968; step 1; tol 1.9421e-05
2: |F(x)| = 1.28353e-08; step 1; tol 5.76892e-10
Done!

We start by reproducing Figure 5a of Reference 1.

[5]: %%opts Overlay [legend_position='top_right']

extents = (-0.25,0,8.75,7.25)

sk_plots = []
for ii,case in enumerate(['1','2','2i']):

label = 'Case{} (pyPRISM)'.format(case)
style = {'line_dash':ls[case],'color':colors[case]}
x = np.array(skAA_results['k'])
y = np.array(skAA_results[case])
c1 = hv.Curve((x,y),label=label,extents=extents)(style=style)
sk_plots.append(c1)
label = 'Case{} (Ref 1)'.format(case)
style = {'marker':markers[case],'color':colors[case]}
x = np.array(skAA_compare['k'])[::5]
y = np.array(skAA_compare[case])[::5]
c2 = hv.Scatter((x,y),label=label,extents=extents)(style=style)
sk_plots.append(c2)

hv.Overlay(sk_plots).redim.label(x='kd',y='S(k)')

[5]: :Overlay
.Curve.Case1_left_parenthesis_pyPRISM_right_parenthesis :Curve [x] (y)
.Scatter.Case1_left_parenthesis_Ref_1_right_parenthesis :Scatter [x] (y)
.Curve.Case2_left_parenthesis_pyPRISM_right_parenthesis :Curve [x] (y)
.Scatter.Case2_left_parenthesis_Ref_1_right_parenthesis :Scatter [x] (y)
.Curve.Case2i_left_parenthesis_pyPRISM_right_parenthesis :Curve [x] (y)
.Scatter.Case2i_left_parenthesis_Ref_1_right_parenthesis :Scatter [x] (y)

Next, we reproduce Figure 5b:

[6]: %%opts Overlay [legend_position='top_right']

extents = (-0.25,0,8.75,7.25)

sk_plots = []
for ii,case in enumerate(['1','2','2i']):

label = 'Case{} (pyPRISM)'.format(case)
style = {'line_dash':ls[case],'color':colors[case]}
x = np.array(skBB_results['k'])
y = np.array(skBB_results[case])
c1 = hv.Curve((x,y),label=label,extents=extents)(style=style)
sk_plots.append(c1)
label = 'Case{} (Ref 1)'.format(case)
style = {'marker':markers[case],'color':colors[case]}
x = np.array(skBB_compare['k'])[::5]
y = np.array(skBB_compare[case])[::5]
c2 = hv.Scatter((x,y),label=label,extents=extents)(style=style)

(continues on next page)

4.4. Tutorial 119

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

sk_plots.append(c2)

hv.Overlay(sk_plots).redim.label(x='kd',y='S(k)')

[6]: :Overlay
.Curve.Case1_left_parenthesis_pyPRISM_right_parenthesis :Curve [x] (y)
.Scatter.Case1_left_parenthesis_Ref_1_right_parenthesis :Scatter [x] (y)
.Curve.Case2_left_parenthesis_pyPRISM_right_parenthesis :Curve [x] (y)
.Scatter.Case2_left_parenthesis_Ref_1_right_parenthesis :Scatter [x] (y)
.Curve.Case2i_left_parenthesis_pyPRISM_right_parenthesis :Curve [x] (y)
.Scatter.Case2i_left_parenthesis_Ref_1_right_parenthesis :Scatter [x] (y)

NB0.Introduction · NB1.PythonBasics · NB2.Theory.General · NB3.Theory.PRISM · NB4.pyPRISM.Overview
· NB5.CaseStudies.PolymerMelts · NB6.CaseStudies.Nanocomposites · NB7.CaseStudies.Copolymers ·
NB8.pyPRISM.Internals · NB9.pyPRISM.Advanced

[]:

pyPRISM Internals

Here, we highlight some implementation details of the pyPRISM. This notebook is only necessary for those wishing to
extend pyPRISM or better understand how the code functions. As such, this notebook will assume a higher familiarity
Python and code development than the others.

Notebook Setup

To begin, please run Kernel-> Restart & Clear Output from the menu at the top of the notebook. It is a
good idea to run this before starting any notebook so that the notebook is fresh for the user. Next, run the cell below
(via the top menu-bar or <Shift-Enter>. If the cell throws an import error, there is likely something wrong with
your environment.

If successful, you should see a set of logos appear below the cell. Which logos appear depend on what is inside the
hv.extension() command at the bottom of the cell. If no logos appear and the cell throws an error, there is likely
something wrong with your environment.

Troubleshooting:

• Did you activate the correct conda environment before starting the jupyter notebook?

• If not using anaconda, did you install all dependencies before starting the jupyter notebook?

• Is pyPRISM installed in your current environment on your PYTHONPATH?

Holoviews + Bokeh Logos:

120 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

[1]: import numpy as np
import pyPRISM
import holoviews as hv
hv.extension('bokeh')

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_load.v0+json

<IPython.core.display.HTML object>

MatrixArray Data Structure

One of the challenges of using PRISM theory is the nature of the data itself: for every space-point in the solution
domain, the user must store a 𝑛 × 𝑛 matrix of correlation values. The theory requires that all of these matrices be
used in mathematical operations e.g., matrix multiplcation and matrix inversion. Furthermore, as these operations are
being carried out on many (>1024) matrices, these operations need to be optimized. Complicating this further, in order
to transfer between Fourier- and Real-space, the correlation values across matrices must be extracted as correlation
curves. The schematic above describes the primary data structure that is used to carry out these tasks in pyPRISM: the
MatrixArray.

Below, we create a 3x3 matrix array with 1024 matrices. MatrixArrays are type-aware so we also provide the site
types. For this example, we will consider a polymer blend in a solvent. Finally, MatrixArrays keep track of whether
they represent Real- or Fourier- space data, so we specify the “space” of the array.

[2]: MA1 = pyPRISM.MatrixArray(length=1024,rank=3,types=['polymer1','polymer2','solvent'],
→˓space=pyPRISM.Space.Real)
MA1

[2]: <MatrixArray rank:3 length:1024>

We can view the underlying Numpy array that stores the data and see that it’s intialized to all zeros by default. Note
that you should not access this array directly and instead should rely on the defined methods as shown below.

[3]: MA1.data

[3]: array([[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],

[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],

[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],

...,

[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],

[[0., 0., 0.],

(continues on next page)

4.4. Tutorial 121

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

[0., 0., 0.],
[0., 0., 0.]],

[[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]])

We can assign and extract curves from the MatrixArray using the square-bracket operators. We’ll fill this Ma-
trixArray with intra-molecular correlation functions. To do this, we’ll need to employ a few other features from
pyPRISM.

Note that matrix symmetry is automatically applied during assignment so assigning MA[‘A’,’B’] automatically assigns
M[‘B’,’A’].

[4]: domain = pyPRISM.Domain(length=1024,dr=0.25)

MA1['polymer1','polymer1'] = pyPRISM.omega.Gaussian(length=1000,sigma=1.0).
→˓calculate(domain.k)
MA1['polymer2','polymer2'] = pyPRISM.omega.Gaussian(length=10,sigma=1.0).
→˓calculate(domain.k)
MA1['solvent','solvent'] = pyPRISM.omega.SingleSite().calculate(domain.k)

print('Full MatrixArray')
print(MA1.data)

Full MatrixArray
[[[991.68567821 0. 0.]

[0. 9.99917183 0.]
[0. 0. 1.]]

[[967.35716814 0. 0.]
[0. 9.99668766 0.]
[0. 0. 1.]]

[[928.76831425 0. 0.]
[0. 9.9925496 0.]
[0. 0. 1.]]

...

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]]

pyPRISM also provides methods to loop over the curves so they can be operated on in sequence.

[5]: for i,t,curve in MA1.itercurve():
print('{}-{} Curve'.format(t[0],t[1]))
print(curve,'\n')

122 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

polymer1-polymer1 Curve
[991.68567821 967.35716814 928.76831425 ... 1. 1.

1.]

polymer1-polymer2 Curve
[0. 0. 0. ... 0. 0. 0.]

polymer1-solvent Curve
[0. 0. 0. ... 0. 0. 0.]

polymer2-polymer2 Curve
[9.99917183 9.99668766 9.9925496 ... 1. 1. 1.]

polymer2-solvent Curve
[0. 0. 0. ... 0. 0. 0.]

solvent-solvent Curve
[1. 1. 1. ... 1. 1. 1.]

We’ll create another MatrixArray which will start out as an array of identity matrices before we modify the values.

[6]: # This creates a matrix Array of identity matrices
MA2 = pyPRISM.IdentityMatrixArray(length=1024,rank=3,types=['polymer1','polymer2',
→˓'solvent'],space=pyPRISM.Space.Real)

print('Identity MatrixArray')
print(MA2.data,'\n')

MA2 *= 2.0 #multply all values by 2
MA2['solvent','solvent'] = 1.2 # set the entire 'solvent-solvent' curve equal to 1.2
MA2 += 3.0 # add three to all values

print('Modified MatrixArray')
print(MA2.data,'\n')

Identity MatrixArray
[[[1. 0. 0.]

[0. 1. 0.]
[0. 0. 1.]]

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

...

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

(continues on next page)

4.4. Tutorial 123

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]]

Modified MatrixArray
[[[5. 3. 3.]

[3. 5. 3.]
[3. 3. 4.2]]

[[5. 3. 3.]
[3. 5. 3.]
[3. 3. 4.2]]

[[5. 3. 3.]
[3. 5. 3.]
[3. 3. 4.2]]

...

[[5. 3. 3.]
[3. 5. 3.]
[3. 3. 4.2]]

[[5. 3. 3.]
[3. 5. 3.]
[3. 3. 4.2]]

[[5. 3. 3.]
[3. 5. 3.]
[3. 3. 4.2]]]

An important step in the PRISM solution process involves inverting the matrices at all space points. The
MatrixArray has a reasonably fast vectorized version of this operation built in.

[7]: result = MA1.invert()
print('Inverted MatrixArray')
print(result.data,'\n')

Inverted MatrixArray
[[[0.00100838 0. 0.]

[0. 0.10000828 0.]
[0. 0. 1.]]

[[0.00103374 0. 0.]
[0. 0.10003313 0.]
[0. 0. 1.]]

[[0.00107669 0. 0.]
[0. 0.10007456 0.]
[0. 0. 1.]]

...

[[1. 0. 0.]
[0. 1. 0.]

(continues on next page)

124 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

[0. 0. 1.]]

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]]

Finally, the MatrixArray provides a number of different operations between multiple arrays. Note that * represents
in-place multiplication while the .dot() method is matrix mulitplication.

[8]: result = MA1 * MA2
print('In-place Multiplication')
print(result.data,'\n')

result = MA1.dot(MA2)
print('Matrix Multiplication')
print(result.data,'\n')

In-place Multiplication
[[[4.95842839e+03 0.00000000e+00 0.00000000e+00]

[0.00000000e+00 4.99958591e+01 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 4.20000000e+00]]

[[4.83678584e+03 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 4.99834383e+01 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 4.20000000e+00]]

[[4.64384157e+03 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 4.99627480e+01 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 4.20000000e+00]]

...

[[5.00000000e+00 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 5.00000000e+00 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 4.20000000e+00]]

[[5.00000000e+00 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 5.00000000e+00 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 4.20000000e+00]]

[[5.00000000e+00 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 5.00000000e+00 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 4.20000000e+00]]]

Matrix Multiplication
[[[4.95842839e+03 2.97505703e+03 2.97505703e+03]

[2.99975155e+01 4.99958591e+01 2.99975155e+01]
[3.00000000e+00 3.00000000e+00 4.20000000e+00]]

[[4.83678584e+03 2.90207150e+03 2.90207150e+03]
[2.99900630e+01 4.99834383e+01 2.99900630e+01]
[3.00000000e+00 3.00000000e+00 4.20000000e+00]]

(continues on next page)

4.4. Tutorial 125

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

[[4.64384157e+03 2.78630494e+03 2.78630494e+03]
[2.99776488e+01 4.99627480e+01 2.99776488e+01]
[3.00000000e+00 3.00000000e+00 4.20000000e+00]]

...

[[5.00000000e+00 3.00000000e+00 3.00000000e+00]
[3.00000000e+00 5.00000000e+00 3.00000000e+00]
[3.00000000e+00 3.00000000e+00 4.20000000e+00]]

[[5.00000000e+00 3.00000000e+00 3.00000000e+00]
[3.00000000e+00 5.00000000e+00 3.00000000e+00]
[3.00000000e+00 3.00000000e+00 4.20000000e+00]]

[[5.00000000e+00 3.00000000e+00 3.00000000e+00]
[3.00000000e+00 5.00000000e+00 3.00000000e+00]
[3.00000000e+00 3.00000000e+00 4.20000000e+00]]]

The MatrixArray interacts with domain objects to tranform from Real- to Fourier- space and vice versa. Note that
these operations occur in-place and this method does not return a new MatrixArray.

[9]: print('Real-Space')
print(MA1.data,'\n')
domain.MatrixArray_to_fourier(MA1)
print('Fourier-Space')
print(MA1.data,'\n')

Real-Space
[[[991.68567821 0. 0.]

[0. 9.99917183 0.]
[0. 0. 1.]]

[[967.35716814 0. 0.]
[0. 9.99668766 0.]
[0. 0. 1.]]

[[928.76831425 0. 0.]
[0. 9.9925496 0.]
[0. 0. 1.]]

...

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]]

Fourier-Space

(continues on next page)

126 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

[[[2.46329939e+07 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 2.33022049e+07 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 2.13822840e+07]]

[[-2.51675413e+06 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 -3.77481824e+06 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 -5.34036209e+06]]

[[4.67049835e+06 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 3.51128971e+06 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 2.37581679e+06]]

...

[[-1.63564440e+01 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 -3.19218659e+01 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 -3.20627732e+01]]

[[4.77535180e+01 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 3.22033679e+01 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 3.20625988e+01]]

[[-1.63244229e+01 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 -3.18593685e+01 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 -3.20000000e+01]]]

MatrixArrays also have safety checks build in to avoid operating across arrays of different spaces. The cell below
should throw an error as MA1 is now in Fourier-space and MA2 is still in Real-space.

[10]: MA1.dot(MA2)

AssertionError Traceback (most recent call last)
<ipython-input-10-dcdd31d919dc> in <module>()
----> 1 MA1.dot(MA2)

~/software/pyPRISM/dev/src/pyPRISM/core/MatrixArray.py in dot(self, other, inplace)
315 '''
316 if isinstance(other,MatrixArray):

--> 317 assert (self.space == other.space) or (Space.NonSpatial in (self.
→˓space,other.space)),MatrixArray.SpaceError

318 if inplace:
319 self.data = np.einsum('lij,ljk->lik', self.data, other.data)

AssertionError: Attempting MatrixArray math in non-matching spaces

ValueTables and PairTables

While the MatrixArray is the workhorse of the PRISM mathematics, there are many times while setting up a
calculation that a more flexible data structure is needed. In particular, it is often the case that data needs to be stored
without mathematical features or the data is non-numerical in nature. pyPRISM provides two data structures towards
this end: ValueTable and PairTable

To start we look at the ValueTable. One of the features of PRISM data and PRISM parameters is that they are
almost always associated with sites. The ValueTable provides an efficient way to access and manipulate data via

4.4. Tutorial 127

pyPRISM Documentation, Release v1.0.4

site-types. See the examples below for an overview:

[11]: VT = pyPRISM.ValueTable(types=['A','B','C','D','E'],name='density')

set the value for type A to be 0.25
VT['A'] = 0.25

set the value for types B & C to be 0.35
VT[['B','C']] = 0.35

set all other values to be 0.1
VT.setUnset(0.1)

for i,t,v in VT:
print('{}) {} for type {} is {}'.format(i,VT.name,t,v))

0) density for type A is 0.25
1) density for type B is 0.35
2) density for type C is 0.35
3) density for type D is 0.1
4) density for type E is 0.1

Alternatively, there are many data in PRISM that are identified by a pair of site types. This is what the PairTable
was designed to handle. Note that in this example, we are storing strings rather than numbers.

[12]: PT = pyPRISM.PairTable(['A','B','C'],name='potential')

Set the 'A-A' pair
PT['A','A'] = 'Lennard-Jones'

Set the 'B-A', 'A-B', 'B-B', 'B-C', and 'C-B' pairs
PT['B',['A','B','C']] = 'Weeks-Chandler-Andersen'

Set the 'C-A', 'A-C', 'C-C' pairs
PT['C',['A','C']] = 'Exponential'

#print only independent pairs
print('Independent Pairs')
for i,t,v in PT.iterpairs():

print('{}) {} for pair {}-{} is {}'.format(i,VT.name,t[0],t[1],v))

#print all pairs
print('\n','All Pairs')
for i,t,v in PT.iterpairs(full=True):

print('{}) {} for pair {}-{} is {}'.format(i,VT.name,t[0],t[1],v))

Independent Pairs
(0, 0)) density for pair A-A is Lennard-Jones
(0, 1)) density for pair A-B is Weeks-Chandler-Andersen
(0, 2)) density for pair A-C is Exponential
(1, 1)) density for pair B-B is Weeks-Chandler-Andersen
(1, 2)) density for pair B-C is Weeks-Chandler-Andersen
(2, 2)) density for pair C-C is Exponential

All Pairs
(0, 0)) density for pair A-A is Lennard-Jones
(0, 1)) density for pair A-B is Weeks-Chandler-Andersen

(continues on next page)

128 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

(0, 2)) density for pair A-C is Exponential
(1, 0)) density for pair B-A is Weeks-Chandler-Andersen
(1, 1)) density for pair B-B is Weeks-Chandler-Andersen
(1, 2)) density for pair B-C is Weeks-Chandler-Andersen
(2, 0)) density for pair C-A is Exponential
(2, 1)) density for pair C-B is Weeks-Chandler-Andersen
(2, 2)) density for pair C-C is Exponential

NB0.Introduction · NB1.PythonBasics · NB2.Theory.General · NB3.Theory.PRISM · NB4.pyPRISM.Overview
· NB5.CaseStudies.PolymerMelts · NB6.CaseStudies.Nanocomposites · NB7.CaseStudies.Copolymers ·
NB8.pyPRISM.Internals · NB9.pyPRISM.Advanced

[]:

Advanced pyPRISM

While we have attempted to cover the basic usage of pyPRISM in this tutorial, there are inevitably use cases that are
more complicated. Here we try to go over a few more advanced topics of pyPRISM. As with the previous notebook,
we assume a slightly higher level of programming and a familiarity with pyPRISM here.

Notebook Setup

To begin, please run Kernel-> Restart & Clear Output from the menu at the top of the notebook. It is a
good idea to run this before starting any notebook so that the notebook is fresh for the user. Next, run the cell below
(via the top menu-bar or <Shift-Enter>. If the cell throws an import error, there is likely something wrong with
your environment.

If successful, you should see a set of logos appear below the cell. Which logos appear depend on what is inside the
hv.extension() command at the bottom of the cell. If no logos appear and the cell throws an error, there is likely
something wrong with your environment.

Troubleshooting:

• Did you activate the correct conda environment before starting the jupyter notebook?

• If not using anaconda, did you install all dependencies before starting the jupyter notebook?

• Is pyPRISM installed in your current environment on your PYTHONPATH?

Holoviews + Bokeh Logos:

[1]: import numpy as np
import pyPRISM
import holoviews as hv
hv.extension('bokeh')

4.4. Tutorial 129

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

Data type cannot be displayed: application/javascript, application/vnd.bokehjs_load.v0+json

<IPython.core.display.HTML object>

Adding a new class or feature to pyPRISM

As users seek to use pyPRISM for new studies, they will likely need a potential, 𝜔, or closure that is not currently
implemented. Here we briefly cover how to create a new class for use in pyPRISM.

As an example, we will work on a new Potential: the square well potential. The only requirements of this class are that
the class inherits from Potential and that it provides a calculate method which returns the potential magnitude given
an array of positions to calculate at. If these are satistified, then this class can be used in pyPRISM! Note that this
contract is the same for closures and 𝜔 as well.

We create the class with three attributes which describe the width and depth of the attractive square well along with
the contact distance.

[2]: from pyPRISM.potential.Potential import Potential
import numpy as np

class SquareWell(Potential):
def __init__(self,depth,width,sigma,high_value=1e6):

r'''Constructor

Attributes

depth: float

depth of attractive well

width: float
width of attractive well. Note that this is
the width *beyond* the contact distance (sigma)

sigma: float
contact distance

high_value: float
value of potential when overlapping

'''
self.sigma = sigma
self.width = sigma + width
self.depth = depth
self.high_value = high_value

def calculate(self,r):
r'''Calculate potential values

Attributes

r: float np.ndarray

Array of pair distances at which to calculate potential values
'''
magnitude = np.zeros_like(r)
magnitude[r<self.width] = -self.depth
magnitude[r<self.sigma] = self.high_value

(continues on next page)

130 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

return magnitude

Below we plot several versions of the potential with different parameters to verify our implementation.

[3]: #holoviews parameters
extents = (0,-5,6,5)
plotParm = {'width':500,'height':400}
styleParm = {}

domain = pyPRISM.Domain(length=1024,dr=0.1)

HS = pyPRISM.potential.HardSphere(sigma=1.0)
U = HS.calculate(domain.r)

curve = hv.Curve((domain.r,U),label='Hard Sphere',extents=extents)(style=styleParm,
→˓plot=plotParm)
curves = [curve]
for width in [1.5,3]:

for depth in [2,4]:
SW = SquareWell(depth=depth,width=width,sigma=1.0)
U = SW.calculate(domain.r)

label = 'width:{} depth:{}'.format(width,depth)
curve = hv.Curve((domain.r,U),label=label,extents=extents)(style=styleParm,

→˓plot=plotParm)
curves.append(curve)

hv.Overlay(curves)

[3]: :Overlay
.Curve.Hard_Sphere :Curve [x] (y)
.Curve.Width_colon_1_full_stop_5_depth_colon_2 :Curve [x] (y)
.Curve.Width_colon_1_full_stop_5_depth_colon_4 :Curve [x] (y)
.Curve.Width_colon_3_depth_colon_2 :Curve [x] (y)
.Curve.Width_colon_3_depth_colon_4 :Curve [x] (y)

Here we use the above defines potential for a simple PRISM calculation of a square well fluid and compare it to the
hard sphere fluid.

[4]: diameter = 1.0

print('== Hard Sphere Calculation ==')
sys = pyPRISM.System(['monomer'],kT=1.0)
sys.domain = pyPRISM.Domain(dr=0.01,length=16384)
sys.diameter['monomer'] = diameter
sys.potential['monomer','monomer'] = pyPRISM.potential.HardSphere(sigma=diameter)
sys.density['monomer'] = 0.9
sys.omega['monomer','monomer'] = pyPRISM.omega.SingleSite()
sys.closure['monomer','monomer'] = pyPRISM.closure.HyperNettedChain(apply_hard_
→˓core=True)
PRISM = sys.createPRISM()
PRISM.solve()
guess = np.copy(PRISM.x)

x = sys.domain.r

(continues on next page)

4.4. Tutorial 131

pyPRISM Documentation, Release v1.0.4

(continued from previous page)

y = pyPRISM.calculate.pair_correlation(PRISM)['monomer','monomer']
rdf1 = hv.Curve((x,y),extents=(0,0,6,None),label='Hard Sphere').redim.label(x='r',y=
→˓'g(r)')

print('== Square Well Calculation ==')
sys.potential['monomer','monomer'] = SquareWell(sigma=diameter,width=1.0,depth=0.3)
PRISM = sys.createPRISM()
PRISM.solve(guess=guess)
x = sys.domain.r
y = pyPRISM.calculate.pair_correlation(PRISM)['monomer','monomer']
rdf2 = hv.Curve((x,y),extents=(0,0,6,None),label='Square Well').redim.label(x='r',y=
→˓'g(r)')

== Hard Sphere Calculation ==
0: |F(x)| = 2.84918; step 0.221669; tol 0.571933
1: |F(x)| = 2.32298; step 0.306827; tol 0.598267
2: |F(x)| = 1.93093; step 0.22343; tol 0.621845
3: |F(x)| = 1.68305; step 0.17015; tol 0.683765
4: |F(x)| = 1.45965; step 0.251084; tol 0.676929
5: |F(x)| = 1.26112; step 0.158712; tol 0.671826
6: |F(x)| = 1.25398; step 1; tol 0.889845
7: |F(x)| = 1.07937; step 0.167843; tol 0.712642
8: |F(x)| = 0.875799; step 0.343204; tol 0.592534
9: |F(x)| = 0.864542; step 1; tol 0.877011
10: |F(x)| = 0.811171; step 1; tol 0.792311
11: |F(x)| = 0.784741; step 1; tol 0.842306
12: |F(x)| = 0.782169; step 1; tol 0.894111
13: |F(x)| = 0.781836; step 1; tol 0.899233
14: |F(x)| = 0.781789; step 1; tol 0.899892
15: |F(x)| = 0.781781; step 1; tol 0.899983
16: |F(x)| = 0.595288; step 0.336799; tol 0.728972
17: |F(x)| = 0.443791; step 0.49023; tol 0.500203
18: |F(x)| = 0.269123; step 1; tol 0.330969
19: |F(x)| = 0.0299694; step 1; tol 0.0111608
20: |F(x)| = 5.33709e-05; step 1; tol 2.85427e-06
== Square Well Calculation ==
0: |F(x)| = 34.2591; step 0.445084; tol 0.664124
1: |F(x)| = 23.623; step 1; tol 0.427918
2: |F(x)| = 19.4116; step 1; tol 0.607708
3: |F(x)| = 4.31223; step 1; tol 0.332379
4: |F(x)| = 3.53273; step 1; tol 0.60403
5: |F(x)| = 3.53243; step 1; tol 0.89985
6: |F(x)| = 2.86334; step 1; tol 0.728757
7: |F(x)| = 2.84914; step 1; tol 0.891095
8: |F(x)| = 2.84914; step 1; tol 0.9
9: |F(x)| = 2.84914; step 1; tol 0.9
10: |F(x)| = 2.84914; step 1; tol 0.9
11: |F(x)| = 1.86771; step 1; tol 0.729
12: |F(x)| = 0.380827; step 1; tol 0.478297
13: |F(x)| = 0.113526; step 1; tol 0.205891
14: |F(x)| = 0.00622344; step 1; tol 0.00270468
15: |F(x)| = 1.42508e-05; step 1; tol 4.71913e-06

Plotting the Results

[5]: hv.Overlay([rdf1,rdf2])(plot=plotParm)

132 Chapter 4. Table of Contents

pyPRISM Documentation, Release v1.0.4

[5]: :Overlay
.Curve.Hard_Sphere :Curve [x] (y)
.Curve.Square_Well :Curve [x] (y)

NB0.Introduction · NB1.PythonBasics · NB2.Theory.General · NB3.Theory.PRISM · NB4.pyPRISM.Overview
· NB5.CaseStudies.PolymerMelts · NB6.CaseStudies.Nanocomposites · NB7.CaseStudies.Copolymers ·
NB8.pyPRISM.Internals · NB9.pyPRISM.Advanced

[]:

4.5 Frequently Asked Questions

4.5.1 What systems can be studied with PRISM?

• polymer melts/blends

• olefinic and non-olefinic polymers

• linear/branched/dendritic/sidechain polymers

• copolymer melts/blends

• polymer solutions

• nanoparticle solutions

• polymer nanocomposites

• liquid crystals (anisotropic formalism)

• micelle Solutions

• polyelectrolytes

• rod-like polymers

• flexible polymers

• ionomers

• ionic liquids

4.5.2 What thermodynamic and structural quantities can PRISM calculate?

• Second virial coefficients, 𝐵2

• Flory effective interaction parameters, 𝜒𝑒𝑓𝑓

• Potentials of mean force

• Pair correlation functions (i.e. radial distribution functions)

• Partial structure factors

• Spinodal transition temperatures

• Equations of state

4.5. Frequently Asked Questions 133

pyPRISM Documentation, Release v1.0.4

• Isothermal compressibilities

4.5.3 For what systems is PRISM theory not applicable for?

• macrophase-separated systems

• non-isotropic phases

• systems with strong nematic ordering (without anistropic formalism)

• calculating dynamic properties (e.g., diffusion coefficients, rheological properties)

4.5.4 What are the benefits of using PRISM over other simulation or theory meth-
ods?

• is orders of magnitude faster

• typically takes seconds to minutes to solve equations

• does not have finite size effects

• does not need to be equilibrated

• is mostly free of incompressibility assumptions

4.5.5 Why can’t I import pyPRISM?

See Troubleshooting

4.5.6 Can pyPRISM be used outside of Jupyter?

Of course! pyPRISM is a Python module and can be used in any Python interface assuming that the dependencies
are satisfied. The developers prefer Jupyter as a teaching environment, so the tutorial uses it. All of the code in the
notebooks can be copied to a Python command line script.

4.5.7 Can pyPRISM handle anisotropic systems?

The current implementation of PRISM cannot handle anisotropic systems and will fail to converge or produce erro-
neous predictions if used for systems that are aligned. There is an anisotropic PRISM formalism that the developers
are interested in implementing in the future.

4.5.8 How do I set up my specific system?

Please make sure you have looked at ALL case studies in the Tutorial and at least skimmed this documentation. We
have attempted to provide a number of different examples and use-cases. If you think there is a deficiency in the
documentation or tutorial, please file a bug report or submit a question via the Issues interface.

4.5.9 What do I do if the solver isn’t converging?

There are a variety of reasons why the solver might seem “stuck”, i.e. the function norm isn’t decreasing. See
Convergence Tips.

134 Chapter 4. Table of Contents

https://github.com/usnistgov/pyPRISM/issues

pyPRISM Documentation, Release v1.0.4

4.5.10 Why doesn’t pyPRISM doesn’t have the feature I need?

See Contributing

4.5.11 How to file a bug report, suggest a feature or ask a question about pyPRISM?

GitHub uses an Issue system to track communication between users and developers. The Issues tool has a flexible
tagging feature which handles multiple types of posts including questions, feature requests, bug reports, and general
discussion. Users should post to the issue system and the developers (or other users!) will respond as soon as they can.

4.6 Self-Consistent PRISM Method

One of the original weaknesses of PRISM theory was the lack of explicit coupling between intra- and inter-molecular
correlations. This means that the global, inter-molecular structure of a system could not affect its intra-molecular
structure. In the past, this limited PRISM calculations to systems where ideality assumptions could be invoked that ef-
fectively de-coupled the intra- and inter-molecular correlations. The Self-Consistent PRISM Method (SCPRISM) cir-
cumvents this limitation by combining PRISM theory and molecular simulation. Single-molecule simulations are used
to calculate the intra-molecular correlation functions which are passed to a PRISM theory calculation. PRISM theory is
then used to calculate an effective solvation potential (see pyPRISM.calculate.solvation_potential())
which is fed back to a new single-molecule simulation. This solvation potential modifies the pairwise interactions of
the molecule to account for the effect of a medium (solvent or polymer matrix) which is not explicitly represented in
the single-molecule simulation. This self-consistent cycle gives the intra- and inter-molecular correlations a feedback
loop in which the two levels of correlations can affect one another.

pyPRISM is fully able to conduct SCPRISM studies in its current form. The developers are working on expand-
ing the discussion of SCPRISM, adding a SCPRISM tutorial notebook, and creating helper utilities for SCPRISM
calculations. These include helper functions which interface with common molecular simulation packages.

4.7 Convergence Tips

One of the most frustrating parts of working with PRISM numerically is that the numerical solver is often unable to
converge to a solution. This is manifested as the cost function norm reported by the solver either not decreasing or
fluctuating. The difficulty is in discerning why the solver is unable to converge. This can be related to the users choice
of (perhaps unphysical) parameters or a poor choice of initial guess passed to the solver. Below are some suggestions
on what to do if you cannot converge to a solution.

4.7.1 Give the solver a better initial guess

As is universally the case when using numerical methods, the better the “initial guess” the better the chance of the
numerical method succeding in finding a minima. By default, pyPRISM uses an uninformed or “dumb” guess, and this
is sufficient for many systems. We are currently working on developing other methods for creating improved “dumb”
guesses.

As an alternative to using an uninformed guess, one can also use the solution from another PRISM calculation as the
guess for their current one. This is generally done by finding a convergable system that is ‘nearby’ in phase space and
then using the solution of that problem (PRISM.x) as the ‘guess’ to a new PRISM solution. This process can be iterated
to achieve convergence in regions of phase space that are not directly convergable. This process is demonstrated in
several of the examples in the Tutorial.

4.6. Self-Consistent PRISM Method 135

https://github.com/usnistgov/pyPRISM/issues

pyPRISM Documentation, Release v1.0.4

4.7.2 Change the closures used for some or all of your site pairs

Certain closures perform better under certain conditions, e.g., if attractive vs. repulsive interactions are used or if
certain species have very asymmetric sizes or interaction strengths. Changing closures for some or all species may
help. In the paper accompanying the pyPRISM tool, we discuss some suggestions for closures based on the system
under study.

4.7.3 Consider your location in phase-space

Maybe the equations are not converging because you are not within the simple isotropic liquid region of your system.
Try varying the interaction strength, density, composition, etc. Remember, PRISM cannot predict the structure of the
phase separated state and PRISM may not predict the phase boundary where you think it should be.

4.7.4 Vary your domain spacing and domain size

There are numerical and physical reasons why the details of one’s solution domain might affect the ability of the
numerical solver to converge. Ensure that your domain spacing is small enough (in Real-space) to capture the smallest
feature of interest. It is also important that you have enough points in your domain for the discrete sine transform
to be correct. We recommend choosing a power of 2 that is (at-least) greater than or equal to length=1024. Keeping
the number of points in your domain to be a power of two, as this choice improves the stability and efficiency of the
Fourier transform.

4.7.5 Try a different numerical solver or solution scheme

While the default numerical solution method that pyPRISM uses is well tested and is most-often the best-choice for
PRISM, there have been cases where alternative solvers converge to a solution more easily. See the Scipy docs for
more information on available solvers. See the pyPRISM.core.PRISM.PRISM.solve() documentation for
how to specify the solver.

4.8 Publications

Here we will attempt to keep an up-to-date listing of the papers which either use pyPRISM or discuss the tool itself.
Please let us know if we are missing any paper by filing an Issue.

4.8.1 pyPRISM Tool Papers

1. Martin, T.B.; Gartner, T.E. III; Jones, R.L.; Snyder, C.R.; Jayaraman, A.; pyPRISM: A Computational Tool
for Liquid State Theory Calculations of Macromolecular Materials, Macromolecules, 2018, 51 (8), p2906-2922
[link]

2. Martin, T.B.; Gartner, T.E. III; Jones, R.L.; Snyder, C.R.; Jayaraman, A.; Design and Implementation of
pyPRISM: A Polymer Liquid-State Theory Framework, Proc. of the 17th Python in Science Conf. (Scipy
2018) (In Submission)

4.8.2 Studies Using pyPRISM

Coming Soon

136 Chapter 4. Table of Contents

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html
https://github.com/usnistgov/pyPRISM/issues
https://dx.doi.org/10.1021/acs.macromol.8b00011

pyPRISM Documentation, Release v1.0.4

4.9 Contributing

4.9.1 How to contribute to pyPRISM?

The ultimate goal of pyPRISM is to create a community of researchers who build upon each others efforts in developing
PRISM-based techniques and applying these techniques to cutting edge problems. In order to make this possible, we
need outside contributions to the codebase. The source code and all development for pyPRISM will be handled through
the repository on GitHub. The primary route for adding a new module or feature to pyPRISM is through the common
“fork + pull request” paradigm that is used across Github. See here for a description on how to carry out this process.
While this method is common in the open-source community, we recognize that this may be over-complicated for
some PRISM researchers. Please file an Issue or contact the developers directly if you have a contribution but don’t
wish to use git/GitHub to integrate it.

4.9.2 Developer Documentation

As the pyPRISM user base grows and we start having regular contributions to the codebase, we will explore putting
together more detailed developer documentation including a style guide and other resources. For now, interested
developers should rely on the API documentation provided here and the notebooks at the end of the Tutorial. Please
file an Issue or contact the developers directly if you need more information to contribute or if something is missing
from the documentation.

4.10 Contact Us

• Dr. Tyler Martin, NIST, GitHub, Webpage, Scholar

• Mr. Thomas Gartner, University of Delaware, GitHub, Scholar

• Dr. Ronald Jones, NIST, Webpage, Scholar

• Dr. Chad Snyder, NIST, Webpage, Scholar

• Prof. Arthi Jayaraman, University of Delaware, Webpage, Scholar

4.11 Legal

4.11.1 NIST Disclaimer

Any identification of commercial or open-source software in this document is done so purely in order to specify the
methodology adequately. Such identification is not intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor is it intended to imply that the softwares identified are necessarily the best
available for the purpose.

4.11.2 NIST License

This software was developed by employees of the National Institute of Standards and Technology (NIST), an agency
of the Federal Government and is being made available as a public service. Pursuant to title 17 United States Code
Section 105, works of NIST employees are not subject to copyright protection in the United States. This software
may be subject to foreign copyright. Permission in the United States and in foreign countries, to the extent that NIST
may hold copyright, to use, copy, modify, create derivative works, and distribute this software and its documentation

4.9. Contributing 137

https://github.com/usnistgov/pyPRISM.git
https://help.github.com/articles/fork-a-repo/
https://github.com/usnistgov/pyPRISM/issues
https://github.com/usnistgov/pyPRISM/issues
https://github.com/martintb
https://www.nist.gov/people/tyler-martin
https://scholar.google.com/citations?user=9JmVnIIAAAAJ&hl=en
https://github.com/tgartner
https://scholar.google.com/citations?user=lzao5SAAAAAJ&hl=en
https://www.nist.gov/people/ronald-l-jones
https://scholar.google.com/citations?user=TKAtIUIAAAAJ&hl=en
https://www.nist.gov/people/chad-r-snyder
https://scholar.google.com/citations?user=MMV7Bf8AAAAJ&hl=en
https://udel.edu/~arthij
https://scholar.google.com/citations?user=FST4YmwAAAAJ

pyPRISM Documentation, Release v1.0.4

without fee is hereby granted on a non-exclusive basis, provided that this notice and disclaimer of warranty appears in
all copies.

THE SOFTWARE IS PROVIDED ‘AS IS’ WITHOUT ANY WARRANTY OF ANY KIND, EITHER EXPRESSED,
IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY THAT THE SOFTWARE
WILL CONFORM TO SPECIFICATIONS, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, AND FREEDOM FROM INFRINGEMENT, AND ANY WARRANTY THAT
THE DOCUMENTATION WILL CONFORM TO THE SOFTWARE, OR ANY WARRANTY THAT THE SOFT-
WARE WILL BE ERROR FREE. IN NO EVENT SHALL NIST BE LIABLE FOR ANY DAMAGES, INCLUD-
ING, BUT NOT LIMITED TO, DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING
OUT OF, RESULTING FROM, OR IN ANY WAY CONNECTED WITH THIS SOFTWARE, WHETHER OR NOT
BASED UPON WARRANTY, CONTRACT, TORT, OR OTHERWISE, WHETHER OR NOT INJURY WAS SUS-
TAINED BY PERSONS OR PROPERTY OR OTHERWISE, AND WHETHER OR NOT LOSS WAS SUSTAINED
FROM, OR AROSE OUT OF THE RESULTS OF, OR USE OF, THE SOFTWARE OR SERVICES PROVIDED
HEREUNDER.

138 Chapter 4. Table of Contents

Python Module Index

p
pyPRISM, 5
pyPRISM.calculate, 20
pyPRISM.calculate.chi, 20
pyPRISM.calculate.pair_correlation, 22
pyPRISM.calculate.pmf, 23
pyPRISM.calculate.second_virial, 24
pyPRISM.calculate.solvation_potential,

24
pyPRISM.calculate.spinodal_condition,

26
pyPRISM.calculate.structure_factor, 27
pyPRISM.closure, 28
pyPRISM.closure.AtomicClosure, 28
pyPRISM.closure.Closure, 29
pyPRISM.closure.HyperNettedChain, 29
pyPRISM.closure.MartynovSarkisov, 30
pyPRISM.closure.MeanSphericalApproximation,

31
pyPRISM.closure.MolecularClosure, 33
pyPRISM.closure.PercusYevick, 33
pyPRISM.core, 6
pyPRISM.core.Density, 6
pyPRISM.core.Domain, 7
pyPRISM.core.IdentityMatrixArray, 9
pyPRISM.core.MatrixArray, 9
pyPRISM.core.PairTable, 13
pyPRISM.core.PRISM, 11
pyPRISM.core.Space, 15
pyPRISM.core.System, 16
pyPRISM.core.Table, 18
pyPRISM.core.ValueTable, 18
pyPRISM.omega, 34
pyPRISM.omega.DiscreteKoyama, 35
pyPRISM.omega.FreelyJointedChain, 37
pyPRISM.omega.FromArray, 38
pyPRISM.omega.FromFile, 39
pyPRISM.omega.Gaussian, 40
pyPRISM.omega.GaussianRing, 41

pyPRISM.omega.NoIntra, 43
pyPRISM.omega.NonOverlappingFreelyJointedChain,

43
pyPRISM.omega.Omega, 45
pyPRISM.omega.SingleSite, 45
pyPRISM.potential, 46
pyPRISM.potential.Exponential, 46
pyPRISM.potential.HardCoreLennardJones,

47
pyPRISM.potential.HardSphere, 48
pyPRISM.potential.LennardJones, 49
pyPRISM.potential.Potential, 50
pyPRISM.potential.WeeksChandlerAndersen,

51
pyPRISM.trajectory, 52
pyPRISM.trajectory.Debyer, 52
pyPRISM.util, 54
pyPRISM.util.UnitConverter, 55

139

Index

Symbols
__call__() (pyPRISM.util.UnitConverter.UnitConverter

method), 55
__getitem__() (pyPRISM.core.MatrixArray.MatrixArray

method), 9
__imul__() (pyPRISM.core.MatrixArray.MatrixArray

method), 9
__init__() (pyPRISM.closure.HyperNettedChain.HyperNettedChain

method), 30
__init__() (pyPRISM.closure.MartynovSarkisov.MartynovSarkisov

method), 31
__init__() (pyPRISM.closure.MeanSphericalApproximation.MeanSphericalApproximation

method), 32
__init__() (pyPRISM.closure.PercusYevick.PercusYevick

method), 34
__init__() (pyPRISM.core.Density.Density method),

6
__init__() (pyPRISM.core.Domain.Domain

method), 8
__init__() (pyPRISM.core.MatrixArray.MatrixArray

method), 10
__init__() (pyPRISM.core.PairTable.PairTable

method), 14
__init__() (pyPRISM.core.System.System method),

16
__init__() (pyPRISM.core.ValueTable.ValueTable

method), 19
__init__() (pyPRISM.omega.DiscreteKoyama.DiscreteKoyama

method), 36
__init__() (pyPRISM.omega.FreelyJointedChain.FreelyJointedChain

method), 38
__init__() (pyPRISM.omega.FromArray.FromArray

method), 39
__init__() (pyPRISM.omega.FromFile.FromFile

method), 40
__init__() (pyPRISM.omega.Gaussian.Gaussian

method), 41
__init__() (pyPRISM.omega.GaussianRing.GaussianRing

method), 42

__init__() (pyPRISM.omega.NonOverlappingFreelyJointedChain.NonOverlappingFreelyJointedChain
method), 44

__init__() (pyPRISM.potential.Exponential.Exponential
method), 46

__init__() (pyPRISM.potential.HardCoreLennardJones.HardCoreLennardJones
method), 48

__init__() (pyPRISM.potential.HardSphere.HardSphere
method), 49

__init__() (pyPRISM.potential.LennardJones.LennardJones
method), 50

__init__() (pyPRISM.potential.WeeksChandlerAndersen.WeeksChandlerAndersen
method), 51

__init__() (pyPRISM.util.UnitConverter.UnitConverter
method), 55

__iter__() (pyPRISM.core.ValueTable.ValueTable
method), 19

__itruediv__() (pyPRISM.core.MatrixArray.MatrixArray
method), 10

__mul__() (pyPRISM.core.MatrixArray.MatrixArray
method), 10

__setitem__() (pyPRISM.core.MatrixArray.MatrixArray
method), 10

__truediv__() (pyPRISM.core.MatrixArray.MatrixArray
method), 10

A
apply() (pyPRISM.core.PairTable.PairTable method),

14
AtomicClosure (class in

pyPRISM.closure.AtomicClosure), 28

B
build_grid() (pyPRISM.core.Domain.Domain

method), 8

C
calculate() (pyPRISM.closure.HyperNettedChain.HyperNettedChain

method), 30
calculate() (pyPRISM.closure.MartynovSarkisov.MartynovSarkisov

method), 31

140

pyPRISM Documentation, Release v1.0.4

calculate() (pyPRISM.closure.MeanSphericalApproximation.MeanSphericalApproximation
method), 32

calculate() (pyPRISM.closure.PercusYevick.PercusYevick
method), 34

calculate() (pyPRISM.omega.DiscreteKoyama.DiscreteKoyama
method), 36

calculate() (pyPRISM.omega.FreelyJointedChain.FreelyJointedChain
method), 38

calculate() (pyPRISM.omega.FromArray.FromArray
method), 39

calculate() (pyPRISM.omega.FromFile.FromFile
method), 40

calculate() (pyPRISM.omega.Gaussian.Gaussian
method), 41

calculate() (pyPRISM.omega.GaussianRing.GaussianRing
method), 42

calculate() (pyPRISM.omega.NoIntra.NoIntra
method), 43

calculate() (pyPRISM.omega.NonOverlappingFreelyJointedChain.NonOverlappingFreelyJointedChain
method), 45

calculate() (pyPRISM.omega.SingleSite.SingleSite
method), 45

calculate() (pyPRISM.potential.Exponential.Exponential
method), 47

calculate() (pyPRISM.potential.HardCoreLennardJones.HardCoreLennardJones
method), 48

calculate() (pyPRISM.potential.HardSphere.HardSphere
method), 49

calculate() (pyPRISM.potential.LennardJones.LennardJones
method), 50

calculate() (pyPRISM.potential.WeeksChandlerAndersen.WeeksChandlerAndersen
method), 52

calculate() (pyPRISM.trajectory.Debyer.Debyer
method), 54

calculate_attractive()
(pyPRISM.potential.LennardJones.LennardJones
method), 50

check() (pyPRISM.core.Density.Density method), 7
check() (pyPRISM.core.PairTable.PairTable method),

14
check() (pyPRISM.core.System.System method), 17
check() (pyPRISM.core.ValueTable.ValueTable

method), 19
chi() (in module pyPRISM.calculate.chi), 20
Closure (class in pyPRISM.closure.Closure), 29
closure (pyPRISM.core.PRISM.PRISM attribute), 11
closure (pyPRISM.core.System.System attribute), 17
cos_avg() (pyPRISM.omega.DiscreteKoyama.DiscreteKoyama

method), 36
cos_sq_avg() (pyPRISM.omega.DiscreteKoyama.DiscreteKoyama

method), 36
cost() (pyPRISM.core.PRISM.PRISM method), 12
createPRISM() (pyPRISM.core.System.System

method), 17

D
Debyer (class in pyPRISM.trajectory.Debyer), 52
Density (class in pyPRISM.core.Density), 6
density (pyPRISM.core.Density.Density attribute), 6
density (pyPRISM.core.System.System attribute), 16
density_correction()

(pyPRISM.omega.DiscreteKoyama.DiscreteKoyama
method), 36

density_correction_kernel()
(pyPRISM.omega.DiscreteKoyama.DiscreteKoyama
method), 36

diameter (pyPRISM.core.System.System attribute), 17
directCorr (pyPRISM.core.PRISM.PRISM attribute),

11
DiscreteKoyama (class in

pyPRISM.omega.DiscreteKoyama), 35
dk (pyPRISM.core.Domain.Domain attribute), 8
Domain (class in pyPRISM.core.Domain), 7
domain (pyPRISM.core.PRISM.PRISM attribute), 11
domain (pyPRISM.core.System.System attribute), 17
dot() (pyPRISM.core.MatrixArray.MatrixArray

method), 10
dr (pyPRISM.core.Domain.Domain attribute), 8

E
Exponential (class in

pyPRISM.potential.Exponential), 46
exportToMatrixArray()

(pyPRISM.core.PairTable.PairTable method),
14

F
fileName (pyPRISM.omega.FromFile.FromFile at-

tribute), 39
FJC (class in pyPRISM.omega.FreelyJointedChain), 37
Fourier (pyPRISM.core.Space.Space attribute), 15
FreelyJointedChain (class in

pyPRISM.omega.FreelyJointedChain), 37
FromArray (class in pyPRISM.omega.FromArray), 38
FromFile (class in pyPRISM.omega.FromFile), 39

G
Gaussian (class in pyPRISM.omega.Gaussian), 40
GaussianRing (class in

pyPRISM.omega.GaussianRing), 41
get() (pyPRISM.core.MatrixArray.MatrixArray

method), 10
get_copy() (pyPRISM.core.MatrixArray.MatrixArray

method), 10
getMatrix() (pyPRISM.core.MatrixArray.MatrixArray

method), 10

H
HardCoreLennardJones (class in

Index 141

pyPRISM Documentation, Release v1.0.4

pyPRISM.potential.HardCoreLennardJones),
47

HardSphere (class in pyPRISM.potential.HardSphere),
48

HNC (class in pyPRISM.closure.HyperNettedChain), 29
HyperNettedChain (class in

pyPRISM.closure.HyperNettedChain), 29

I
IdentityMatrixArray (class in

pyPRISM.core.IdentityMatrixArray), 9
invert() (pyPRISM.core.MatrixArray.MatrixArray

method), 11
itercurve() (pyPRISM.core.MatrixArray.MatrixArray

method), 11
iterpairs() (pyPRISM.core.MatrixArray.MatrixArray

method), 11
iterpairs() (pyPRISM.core.PairTable.PairTable

method), 15
iterpairs() (pyPRISM.core.System.System method),

17

K
k (pyPRISM.omega.FromArray.FromArray attribute), 38
kernel_base() (pyPRISM.omega.DiscreteKoyama.DiscreteKoyama

method), 36
koyama_kernel_fourier()

(pyPRISM.omega.DiscreteKoyama.DiscreteKoyama
method), 36

koyama_kernel_real()
(pyPRISM.omega.DiscreteKoyama.DiscreteKoyama
method), 37

kT (pyPRISM.core.System.System attribute), 17

L
length (pyPRISM.core.Domain.Domain attribute), 8
LennardJones (class in

pyPRISM.potential.LennardJones), 49
listify() (pyPRISM.core.Table.Table method), 18

M
MartynovSarkisov (class in

pyPRISM.closure.MartynovSarkisov), 30
MatrixArray (class in pyPRISM.core.MatrixArray), 9
MatrixArray_to_fourier()

(pyPRISM.core.Domain.Domain method),
8

MatrixArray_to_real()
(pyPRISM.core.Domain.Domain method),
8

MeanSphericalApproximation (class in
pyPRISM.closure.MeanSphericalApproximation),
31

MolecularClosure (class in
pyPRISM.closure.MolecularClosure), 33

MS (class in pyPRISM.closure.MartynovSarkisov), 30
MSA (class in pyPRISM.closure.MeanSphericalApproximation),

31

N
NFJC (class in pyPRISM.omega.NonOverlappingFreelyJointedChain),

43
NoIntra (class in pyPRISM.omega.NoIntra), 43
NonOverlappingFreelyJointedChain (class in

pyPRISM.omega.NonOverlappingFreelyJointedChain),
43

NonSpatial (pyPRISM.core.Space.Space attribute),
15

O
Omega (class in pyPRISM.omega.Omega), 45
omega (pyPRISM.core.PRISM.PRISM attribute), 11
omega (pyPRISM.core.System.System attribute), 17
omega (pyPRISM.omega.FromArray.FromArray at-

tribute), 38

P
pair (pyPRISM.core.Density.Density attribute), 7
pair_correlation() (in module

pyPRISM.calculate.pair_correlation), 22
pairCorr (pyPRISM.core.PRISM.PRISM attribute), 11
pairDensityMatrix (pyPRISM.core.PRISM.PRISM

attribute), 12
PairTable (class in pyPRISM.core.PairTable), 13
PercusYevick (class in

pyPRISM.closure.PercusYevick), 33
pmf() (in module pyPRISM.calculate.pmf), 23
Potential (class in pyPRISM.potential.Potential), 50
potential (pyPRISM.core.PRISM.PRISM attribute),

12
potential (pyPRISM.core.System.System attribute),

16
PRISM (class in pyPRISM.core.PRISM), 11
PY (class in pyPRISM.closure.PercusYevick), 33
pyPRISM (module), 5
pyPRISM.calculate (module), 20
pyPRISM.calculate.chi (module), 20
pyPRISM.calculate.pair_correlation (mod-

ule), 22
pyPRISM.calculate.pmf (module), 23
pyPRISM.calculate.second_virial (module),

24
pyPRISM.calculate.solvation_potential

(module), 24
pyPRISM.calculate.spinodal_condition

(module), 26

142 Index

pyPRISM Documentation, Release v1.0.4

pyPRISM.calculate.structure_factor (mod-
ule), 27

pyPRISM.closure (module), 28
pyPRISM.closure.AtomicClosure (module), 28
pyPRISM.closure.Closure (module), 29
pyPRISM.closure.HyperNettedChain (mod-

ule), 29
pyPRISM.closure.MartynovSarkisov (mod-

ule), 30
pyPRISM.closure.MeanSphericalApproximation

(module), 31
pyPRISM.closure.MolecularClosure (mod-

ule), 33
pyPRISM.closure.PercusYevick (module), 33
pyPRISM.core (module), 6
pyPRISM.core.Density (module), 6
pyPRISM.core.Domain (module), 7
pyPRISM.core.IdentityMatrixArray (mod-

ule), 9
pyPRISM.core.MatrixArray (module), 9
pyPRISM.core.PairTable (module), 13
pyPRISM.core.PRISM (module), 11
pyPRISM.core.Space (module), 15
pyPRISM.core.System (module), 16
pyPRISM.core.Table (module), 18
pyPRISM.core.ValueTable (module), 18
pyPRISM.omega (module), 34
pyPRISM.omega.DiscreteKoyama (module), 35
pyPRISM.omega.FreelyJointedChain (mod-

ule), 37
pyPRISM.omega.FromArray (module), 38
pyPRISM.omega.FromFile (module), 39
pyPRISM.omega.Gaussian (module), 40
pyPRISM.omega.GaussianRing (module), 41
pyPRISM.omega.NoIntra (module), 43
pyPRISM.omega.NonOverlappingFreelyJointedChain

(module), 43
pyPRISM.omega.Omega (module), 45
pyPRISM.omega.SingleSite (module), 45
pyPRISM.potential (module), 46
pyPRISM.potential.Exponential (module), 46
pyPRISM.potential.HardCoreLennardJones

(module), 47
pyPRISM.potential.HardSphere (module), 48
pyPRISM.potential.LennardJones (module),

49
pyPRISM.potential.Potential (module), 50
pyPRISM.potential.WeeksChandlerAndersen

(module), 51
pyPRISM.trajectory (module), 52
pyPRISM.trajectory.Debyer (module), 52
pyPRISM.util (module), 54
pyPRISM.util.UnitConverter (module), 55

R
r (pyPRISM.potential.Exponential.Exponential at-

tribute), 47
r (pyPRISM.potential.HardCoreLennardJones.HardCoreLennardJones

attribute), 48
r (pyPRISM.potential.HardSphere.HardSphere at-

tribute), 49
r (pyPRISM.potential.LennardJones.LennardJones at-

tribute), 50
r (pyPRISM.potential.WeeksChandlerAndersen.WeeksChandlerAndersen

attribute), 52
rank (pyPRISM.core.System.System attribute), 16
Real (pyPRISM.core.Space.Space attribute), 15

S
second_virial() (in module

pyPRISM.calculate.second_virial), 24
setMatrix() (pyPRISM.core.MatrixArray.MatrixArray

method), 11
setUnset() (pyPRISM.core.PairTable.PairTable

method), 15
setUnset() (pyPRISM.core.ValueTable.ValueTable

method), 19
SingleSite (class in pyPRISM.omega.SingleSite), 45
site (pyPRISM.core.Density.Density attribute), 7
siteDensityMatrix (pyPRISM.core.PRISM.PRISM

attribute), 12
solvation_potential() (in module

pyPRISM.calculate.solvation_potential),
24

solve() (pyPRISM.core.PRISM.PRISM method), 12
solve() (pyPRISM.core.System.System method), 17
Space (class in pyPRISM.core.Space), 15
SpaceError (pyPRISM.core.MatrixArray.MatrixArray

attribute), 9
spinodal_condition() (in module

pyPRISM.calculate.spinodal_condition),
26

structure_factor() (in module
pyPRISM.calculate.structure_factor), 27

System (class in pyPRISM.core.System), 16

T
Table (class in pyPRISM.core.Table), 18
test() (in module pyPRISM), 5
to_fourier() (pyPRISM.core.Domain.Domain

method), 8
to_real() (pyPRISM.core.Domain.Domain method),

8
toCelcius() (pyPRISM.util.UnitConverter.UnitConverter

method), 56
toConcentration()

(pyPRISM.util.UnitConverter.UnitConverter
method), 56

Index 143

pyPRISM Documentation, Release v1.0.4

toInvAngstrom() (pyPRISM.util.UnitConverter.UnitConverter
method), 56

toInvNanometer() (pyPRISM.util.UnitConverter.UnitConverter
method), 56

toKelvin() (pyPRISM.util.UnitConverter.UnitConverter
method), 56

total (pyPRISM.core.Density.Density attribute), 7
totalCorr (pyPRISM.core.PRISM.PRISM attribute),

11
toVolumeFraction()

(pyPRISM.util.UnitConverter.UnitConverter
method), 57

types (pyPRISM.core.System.System attribute), 16

U
UnitConverter (class in

pyPRISM.util.UnitConverter), 55

V
ValueTable (class in pyPRISM.core.ValueTable), 18

W
WeeksChandlerAndersen (class in

pyPRISM.potential.WeeksChandlerAndersen),
51

144 Index

	Citations
	pyPRISM Example
	External Resources
	Table of Contents
	Python Module Index
	Index

